40 research outputs found

    Induction of osteogenic markers in differentially treated cultures of embryonic stem cells

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Facial trauma or tumor surgery in the head and face area often lead to massive destruction of the facial skeleton. Cell-based bone reconstruction therapies promise to offer new therapeutic opportunities for the repair of bone damaged by disease or injury. Currently, embryonic stem cells (ESCs) are discussed to be a potential cell source for bone tissue engineering. The purpose of this study was to investigate various supplements in culture media with respect to the induction of osteogenic differentiation.</p> <p>Methods</p> <p>Murine ESCs were cultured in the presence of LIF (leukemia inhibitory factor), DAG (dexamethasone, ascorbic acid and β-glycerophosphate) or bone morphogenetic protein-2 (BMP-2). Microscopical analyses were performed using von Kossa staining, and expression of osteogenic marker genes was determined by real time PCR.</p> <p>Results</p> <p>ESCs cultured with DAG showed by far the largest deposition of calcium phosphate-containing minerals. Starting at day 9 of culture, a strong increase in collagen I mRNA expression was detected in the DAG-treated cells. In BMP-2-treated ESCs the collagen I mRNA induction was less increased. Expression of osteocalcin, a highly specific marker for osteogentic differentiation, showed a double-peaked curve in DAG-treated cells. ESCs cultured in the presence of DAG showed a strong increase in osteocalcin mRNA at day 9 followed by a second peak starting at day 17.</p> <p>Conclusion</p> <p>Supplementation of ESC cell cultures with DAG is effective in inducing osteogenic differentiation and appears to be more potent than stimulation with BMP-2 alone. Thus, DAG treatment can be recommended for generating ESC populations with osteogenic differentiation that are intended for use in bone tissue engineering.</p

    Principles of cartilage tissue engineering in TMJ reconstruction

    Get PDF
    Diseases and defects of the temporomandibular joint (TMJ), compromising the cartilaginous layer of the condyle, impose a significant treatment challenge. Different regeneration approaches, especially surgical interventions at the TMJ's cartilage surface, are established treatment methods in maxillofacial surgery but fail to induce a regeneration ad integrum. Cartilage tissue engineering, in contrast, is a newly introduced treatment option in cartilage reconstruction strategies aimed to heal cartilaginous defects. Because cartilage has a limited capacity for intrinsic repair, and even minor lesions or injuries may lead to progressive damage, biological oriented approaches have gained special interest in cartilage therapy. Cell based cartilage regeneration is suggested to improve cartilage repair or reconstruction therapies. Autologous cell implantation, for example, is the first step as a clinically used cell based regeneration option. More advanced or complex therapeutical options (extracorporeal cartilage engineering, genetic engineering, both under evaluation in pre-clinical investigations) have not reached the level of clinical trials but may be approached in the near future. In order to understand cartilage tissue engineering as a new treatment option, an overview of the biological, engineering, and clinical challenges as well as the inherent constraints of the different treatment modalities are given in this paper

    Mesodermal fate decisions of a stem cell: the Wnt switch

    Get PDF
    Stem cells are a powerful resource for cell-based transplantation therapies in osteodegenerative disorders, but before some kinds of stem cells can be applied clinically, several aspects of their expansion and differentiation need to be better controlled. Wnt molecules and members of the Wnt signaling cascade have been ascribed a role in both these processes in vitro as well as normal development in vivo. However some results are controversial. In this review we will present the hypothesis that both canonical and non-canonical signaling are involved in mesenchymal cell fate regulation, such as adipogenesis, chondrogenesis and osteogenesis, and that in vitro it is a timely switch between the two that specifies the identity of the differentiating cell. We will specifically focus on the in vitro differentiation of adipocytes, chondrocytes and osteoblasts contrasting embryonic and mesenchymal stem cells as well as the role of Wnts in mesenchymal fate specification during embryogenesis

    Present state and future perspectives of using pluripotent stem cells in toxicology research

    Get PDF
    The use of novel drugs and chemicals requires reliable data on their potential toxic effects on humans. Current test systems are mainly based on animals or in vitro–cultured animal-derived cells and do not or not sufficiently mirror the situation in humans. Therefore, in vitro models based on human pluripotent stem cells (hPSCs) have become an attractive alternative. The article summarizes the characteristics of pluripotent stem cells, including embryonic carcinoma and embryonic germ cells, and discusses the potential of pluripotent stem cells for safety pharmacology and toxicology. Special attention is directed to the potential application of embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) for the assessment of developmental toxicology as well as cardio- and hepatotoxicology. With respect to embryotoxicology, recent achievements of the embryonic stem cell test (EST) are described and current limitations as well as prospects of embryotoxicity studies using pluripotent stem cells are discussed. Furthermore, recent efforts to establish hPSC-based cell models for testing cardio- and hepatotoxicity are presented. In this context, methods for differentiation and selection of cardiac and hepatic cells from hPSCs are summarized, requirements and implications with respect to the use of these cells in safety pharmacology and toxicology are presented, and future challenges and perspectives of using hPSCs are discussed

    The management of acute venous thromboembolism in clinical practice. Results from the European PREFER in VTE Registry

    Get PDF
    Venous thromboembolism (VTE) is a significant cause of morbidity and mortality in Europe. Data from real-world registries are necessary, as clinical trials do not represent the full spectrum of VTE patients seen in clinical practice. We aimed to document the epidemiology, management and outcomes of VTE using data from a large, observational database. PREFER in VTE was an international, non-interventional disease registry conducted between January 2013 and July 2015 in primary and secondary care across seven European countries. Consecutive patients with acute VTE were documented and followed up over 12 months. PREFER in VTE included 3,455 patients with a mean age of 60.8 ± 17.0 years. Overall, 53.0 % were male. The majority of patients were assessed in the hospital setting as inpatients or outpatients (78.5 %). The diagnosis was deep-vein thrombosis (DVT) in 59.5 % and pulmonary embolism (PE) in 40.5 %. The most common comorbidities were the various types of cardiovascular disease (excluding hypertension; 45.5 %), hypertension (42.3 %) and dyslipidaemia (21.1 %). Following the index VTE, a large proportion of patients received initial therapy with heparin (73.2 %), almost half received a vitamin K antagonist (48.7 %) and nearly a quarter received a DOAC (24.5 %). Almost a quarter of all presentations were for recurrent VTE, with &gt;80 % of previous episodes having occurred more than 12 months prior to baseline. In conclusion, PREFER in VTE has provided contemporary insights into VTE patients and their real-world management, including their baseline characteristics, risk factors, disease history, symptoms and signs, initial therapy and outcomes

    Accumulation of plant small heat-stress proteins in storage organs

    No full text
    Plant small heat-stress proteins (sHSPs) have been shown to be expressed not only after exposure to elevated temperatures, but also at particular developmental stages such as embryogenesis, microsporogenesis, and fruit maturation. This paper presents new data on the occurrence of sHSPs in vegetative tissues, their tissue-specific distribution, and cellular localization. We have found sHSPs in 1-year-old twigs of Acer platanoides L. and Sambucus nigra L. and in the liana Aristolochia macrophylla Lamk. exclusively in the winter months. In tendrils of Aristolochia, sHSPs were localized in vascular cambium cells. After budding, in spring, these proteins were no longer present. Furthermore, accumulation of sHSPs was demonstrated in tubers and bulbs of Allium cepa L., Amaryllis ( Hippeastrum hybridum hort.), Crocus albiflorus L., Hyacinthus orientalis L., Narcissus pseudonarcissus L., Tulipa gesneriana L., and Solanum tuberosum L. (potato). In potato tubers and bulb scales of Narcissus the stress proteins were localized in the central vacuoles of storage parenchyma cells. In order to obtain more information on a possible functional correlation between storage proteins and sHSPs, the accumulation of both types of protein in tobacco seeds during seed ripening and germination was monitored. The expression of sHSPs and globulins started simultaneously at about the 17th day after anthesis. During seed germination the sHSPs disappeared in parallel with the storage proteins. Furthermore, in embryos of transgenic tobacco plants, which do not contain any protein bodies or storage proteins, no sHSPs were found. Thus, the occurrence of sHSPs in perennial plant storage organs seems to be associated with the presence of storage proteins

    NORAH (Noise Related Annoyance, Cognition, and Health): Questions, designs, and main results

    Get PDF
    The German multidisciplinary research project NORAH (Noise Related Annoyance, Cognition and Health) was aimed at providing a broad and scientifically reliable description of the effects of air, road and rail traffic noise on the health and life quality of residents in the vicinity of airports. Ten scientific institutes participated and performed surveys, secondary health data analyses, sleep quality registrations, blood pressure registrations, and special tests on children at school. Main results: 1. At all four airports studied, the percentage of persons highly annoyed by air traffic noise at comparable noise levels was larger than would be expected from the so-called "EU standard curves" [1]. 2. With respect to cardiovascular health risks, the effects of rail and road traffic noise on heart failure, myocardial infarction, and stroke were more clearly seen as compared to the effects of aviation noise. 3. There was no statistically significant increase of self-registered blood pressure values with increasing LpAeq for the evening and night-time for transportation noise. 4. Night-time sleep of residents showed a diminished number of aircraft associated awakenings with the introduction of the night curfew at Frankfurt Airport for a group being in bed during 22:00-22:30 hrs until 06:00-06:30 hrs. The probability of awakening due to a single aircraft event, however, did not change before and after the night curfew. 5. Multilevel analyses revealed a significant linear association between aircraft noise levels at school and decreasing reading performance in second graders. A one month delay in reading was observed for an increase in noise levels by 10 dB LpAeq
    corecore