122 research outputs found

    Real-World Image Super Resolution via Unsupervised Bi-directional Cycle Domain Transfer Learning based Generative Adversarial Network

    Full text link
    Deep Convolutional Neural Networks (DCNNs) have exhibited impressive performance on image super-resolution tasks. However, these deep learning-based super-resolution methods perform poorly in real-world super-resolution tasks, where the paired high-resolution and low-resolution images are unavailable and the low-resolution images are degraded by complicated and unknown kernels. To break these limitations, we propose the Unsupervised Bi-directional Cycle Domain Transfer Learning-based Generative Adversarial Network (UBCDTL-GAN), which consists of an Unsupervised Bi-directional Cycle Domain Transfer Network (UBCDTN) and the Semantic Encoder guided Super Resolution Network (SESRN). First, the UBCDTN is able to produce an approximated real-like LR image through transferring the LR image from an artificially degraded domain to the real-world LR image domain. Second, the SESRN has the ability to super-resolve the approximated real-like LR image to a photo-realistic HR image. Extensive experiments on unpaired real-world image benchmark datasets demonstrate that the proposed method achieves superior performance compared to state-of-the-art methods.Comment: 12 pages, 5 figures,3 tables. This work is submitted to IEEE Transactions on Systems, Man, and Cybernetics: Systems (2022). It's under review by IEEE Transactions on Systems, Man, and Cybernetics: Systems for no

    The Neighboring Component Effect in a Tristable [2]Rotaxane

    Get PDF
    The redox properties of cyclobis(paraquat-p-phenylene) cyclophane (CBPQT^(4+)) renders it a uniquely variable source of recognition in the context of mechanically interlocked molecules, through aromatic donor-acceptor interactions in its fully oxidized state (CPBQT^(4+)) and radical- pairing interactions in its partially reduced state (CBPQT^(2(•+))). Although it is expected that the fully reduced neutral state (CBPQT^((0))) might behave as a p-donating recognition unit, resulting in a dramatic change in its binding properties when compared with the other two redox states, its role in rotaxanes has not yet been investigated. To address this challenge, we report herein the synthesis of a tristable [2]rotaxane in which a CBPQT^(4+) ring is mechanically interlocked with a dumbbell component containing five recognition sites—(i) one, a bipyridinium radical cation (BIPY^((•+))) located centrally along the axis of the dumbbell, straddled by (ii) two tetrafluorophenylene units linked to (iii) two triazole rings. In addition to the selective recognition between (iv) the CBPQT^(4+) ring and the triazole units, and (v) the CBPQT^(2(•+)) ring and the reduced BIPY^((•+)) unit in the dumbbell component, investigations in solution have now confirmed the presence of additional noncovalent bonding interactions between the CBPQT^((0)) ring, acting as a donor in its neutral state towards the two tetrafluorophenylene acceptors in the dumbbell component. The unveiling of this piece of molecular recognition in a [2]rotaxane is reminiscent of the existence in much simpler, covalently linked, organic molecules of neighboring group participation (anchimeric assistance giving way to transannular interactions) in small-, medium-, and large-membered rings

    Competing electronic states emerging on polar surfaces

    Get PDF
    Excess charge on polar surfaces of ionic compounds is commonly described by the two-dimensional electron gas (2DEG) model, a homogeneous distribution of charge, spatially-confined in a few atomic layers. Here, by combining scanning probe microscopy with density functional theory calculations, we show that excess charge on the polar TaO2 termination of KTaO3(001) forms more complex electronic states with different degrees of spatial and electronic localization: charge density waves (CDW) coexist with strongly-localized electron polarons and bipolarons. These surface electronic reconstructions, originating from the combined action of electron-lattice interaction and electronic correlation, are energetically more favorable than the 2DEG solution. They exhibit distinct spectroscopy signals and impact on the surface properties, as manifested by a local suppression of ferroelectric distortions

    Bibliometric and visualized analysis of 3D printing bioink in bone tissue engineering

    Get PDF
    Background: Applying 3D printed bioink to bone tissue engineering is an emerging technology for restoring bone tissue defects. This study aims to evaluate the application of 3D printing bioink in bone tissue engineering from 2010 to 2022 through bibliometric analysis, and to predict the hotspots and developing trends in this field.Methods: We retrieved publications from Web of Science from 2010 to 2022 on 8 January 2023. We examined the retrieved data using the bibliometrix package in R software, and VOSviewer and CiteSpace were used for visualizing the trends and hotspots of research on 3D printing bioink in bone tissue engineering.Results: We identified 682 articles and review articles in this field from 2010 to 2022. The journal Biomaterials ranked first in the number of articles published in this field. In 2016, an article published by Hölzl, K in the Biofabrication journal ranked first in number of citations. China ranked first in number of articles published and in single country publications (SCP), while America surpassed China to rank first in multiple country publications (MCP). In addition, a collaboration network analysis showed tight collaborations among China, America, South Korea, Netherlands, and other countries, with the top 10 major research affiliations mostly from these countries. The top 10 high-frequency words in this field are consistent with the field’s research hotspots. The evolution trend of the discipline indicates that most citations come from Physics/Materials/Chemistry journals. Factorial analysis plays an intuitive role in determining research hotspots in this sphere. Keyword burst detection shows that chitosan and endothelial cells are emerging research hotspots in this field.Conclusion: This bibliometric study maps out a fundamental knowledge structure including countries, affiliations, authors, journals and keywords in this field of research from 2010 to 2022. This study fills a gap in the field of bibliometrics and provides a comprehensive perspective with broad prospects for this burgeoning research area

    Roughage quality determines the production performance of post-weaned Hu sheep via altering ruminal fermentation, morphology, microbiota, and the global methylome landscape of the rumen wall

    Get PDF
    Roughage quality is a crucial factor influencing the growth performance and feeding cost of ruminants; however, a systematic investigation of the mechanisms underlying this is still lacking. In this study, we examined the growth performance, meat quality, ruminal fermentation parameters, rumen microbiome, and tissue methylomes of post-weaned Hu sheep fed low- or high-quality forage-based diets. Our results showed that sheep in the alfalfa hay (AG) and peanut vine (PG) groups exhibited better growth performance, slaughter performance, and meat quality than sheep in the wheat straw group (WG). The sheep in the AG possessed relatively higher contents of serum immunoglobins (IgA, IgG, and IgM) and lower contents of serum inflammation factors (TNF-α, IL-1β, IL-6, and IL-8) than those in the WG and the PG did. In addition, the levels of blood T lymphocytes (CD4+ and CD8+) and the CD4-to-CD8 ratio were significantly higher in the AG sheep than in the WG sheep and PG sheep. The concentration of ruminal NH3-N was highest in WG sheep, whereas the concentrations of individual and total short-chain fatty acids (SCFAs) were highest in the PG sheep. The length, width, and surface area of ruminal papillae were markedly different among the three groups, with the sheep in the PG being the most morphologically developed. The main ruminal microbes at the genus level include Prevotella 1, Rikenellaceae RC9 gut group, norank f F082, Ruminococcus 1, and Ruminococcus 2. The relative abundances of certain species are positively or negatively associated with fermentation parameters and growth index. For example, the fibrolytic bacteria Ruminococcaceae UGG-001 showed positive relationships with the concentration of SCFAs, except propionate. In addition, the relative abundances of fibrolytic bacteria (e.g., Ruminoccus 1) showed a negative relationship with starch-degrading bacteria (e.g., Prevotellaceae). The genome-wide DNA methylation analysis revealed that rumen tissues in the PG sheep and WG sheep occupied different global DNA methylomes. The genes with differentially methylated promoters were involved in known pathways (e.g., the FoxO signaling pathway) and the Gene Ontology (GO) terms (e.g., anatomical structure morphogenesis) pertaining to rumen development. Two candidate genes (ACADL and ENSOARG00020014533) with hyper- and hypo-methylated promoters were screened as potential regulators of rumen development. In conclusion, roughage quality determines sheep growth performance via directly influencing rumen fermentation and microbiome composition, and indirectly affecting rumen development at the epigenetic level

    Pasture intake protects against commercial diet-induced lipopolysaccharide production facilitated by gut microbiota through activating intestinal alkaline phosphatase enzyme in meat geese

    Get PDF
    IntroductionDiet strongly affects gut microbiota composition, and gut bacteria can influence the intestinal barrier functions and systemic inflammation through metabolic endotoxemia. In-house feeding system (IHF, a low dietary fiber source) may cause altered cecal microbiota composition and inflammatory responses in meat geese via increased endotoxemia (lipopolysaccharides) with reduced intestinal alkaline phosphatase (ALP) production. The effects of artificial pasture grazing system (AGF, a high dietary fiber source) on modulating gut microbiota architecture and gut barrier functions have not been investigated in meat geese. Therefore, this study aimed to investigate whether intestinal ALP could play a critical role in attenuating reactive oxygen species (ROS) generation and ROS facilitating NF-κB pathway-induced systemic inflammation in meat geese.MethodsThe impacts of IHF and AGF systems on gut microbial composition via 16 sRNA sequencing were assessed in meat geese. The host markers analysis through protein expression of serum and cecal tissues, hematoxylin and eosin (H&E) staining, localization of NF-қB and Nrf2 by immunofluorescence analysis, western blotting analysis of ALP, and quantitative PCR of cecal tissues was evaluated.Results and DiscussionIn the gut microbiota analysis, meat geese supplemented with pasture showed a significant increase in commensal microbial richness and diversity compared to IHF meat geese demonstrating the antimicrobial, antioxidant, and anti-inflammatory ability of the AGF system. A significant increase in intestinal ALP-induced Nrf2 signaling pathway was confirmed representing LPS dephosphorylation mediated TLR4/MyD88 induced ROS reduction mechanisms in AGF meat geese. Further, the correlation analysis of top 44 host markers with gut microbiota showed that artificial pasture intake protected gut barrier functions via reducing ROS-mediated NF-κB pathway-induced gut permeability, systemic inflammation, and aging phenotypes. In conclusion, the intestinal ALP functions to regulate gut microbial homeostasis and barrier function appear to inhibit pro-inflammatory cytokines by reducing LPS-induced ROS production in AGF meat geese. The AGF system may represent a novel therapy to counteract the chronic inflammatory state leading to low dietary fiber-related diseases in animals

    Surface chemistry on a polarizable surface: Coupling of CO with KTaO3(001)

    Get PDF
    Polarizable materials attract attention in catalysis because they have a free parameter for tuning chemical reactivity. Their surfaces entangle the dielectric polarization with surface polarity, excess charge, and orbital hybridization. How this affects individual adsorbed molecules is shown for the incipient ferroelectric perovskite KTaO3. This intrinsically polar material cleaves along (001) into KO- and TaO2-terminated surface domains. At TaO2 terraces, the polarity-compensating excess electrons form a two-dimensional electron gas and can also localize by coupling to ferroelectric distortions. TaO2 terraces host two distinct types of CO molecules, adsorbed at equivalent lattice sites but charged differently as seen in atomic force microscopy/scanning tunneling microscopy. Temperature-programmed desorption shows substantially stronger binding of the charged CO; in density functional theory calculations, the excess charge favors a bipolaronic configuration coupled to the CO. These results pinpoint how adsorption states couple to ferroelectric polarization

    The genome evolution and domestication of tropical fruit mango

    Get PDF
    Background: Mango is one of the world’s most important tropical fruits. It belongs to the family Anacardiaceae, which includes several other economically important species, notably cashew, sumac and pistachio from other genera. Many species in this family produce family-specific urushiols and related phenols, which can induce contact dermatitis. Results: We generate a chromosome-scale genome assembly of mango, providing a reference genome for the Anacardiaceae family. Our results indicate the occurrence of a recent whole-genome duplication (WGD) event in mango. Duplicated genes preferentially retained include photosynthetic, photorespiration, and lipid metabolic genes that may have provided adaptive advantages to sharp historical decreases in atmospheric carbon dioxide and global temperatures. A notable example of an extended gene family is the chalcone synthase (CHS) family of genes, and particular genes in this family show universally higher expression in peels than in flesh, likely for the biosynthesis of urushiols and related phenols. Genome resequencing reveals two distinct groups of mango varieties, with commercial varieties clustered with India germplasms and demonstrating allelic admixture, and indigenous varieties from Southeast Asia in the second group. Landraces indigenous in China formed distinct clades, and some showed admixture in genomes. Conclusions: Analysis of chromosome-scale mango genome sequences reveals photosynthesis and lipid metabolism are preferentially retained after a recent WGD event, and expansion of CHS genes is likely associated with urushiol biosynthesis in mango. Genome resequencing clarifies two groups of mango varieties, discovers allelic admixture in commercial varieties, and shows distinct genetic background of landraces
    • …
    corecore