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Background: Applying 3D printed bioink to bone tissue engineering is an
emerging technology for restoring bone tissue defects. This study aims to
evaluate the application of 3D printing bioink in bone tissue engineering from
2010 to 2022 through bibliometric analysis, and to predict the hotspots and
developing trends in this field.

Methods: We retrieved publications from Web of Science from 2010 to 2022 on
8 January 2023. We examined the retrieved data using the bibliometrix package in
R software, and VOSviewer and CiteSpace were used for visualizing the trends and
hotspots of research on 3D printing bioink in bone tissue engineering.

Results: We identified 682 articles and review articles in this field from 2010 to
2022. The journal Biomaterials ranked first in the number of articles published in
this field. In 2016, an article published by Hölzl, K in the Biofabrication journal
ranked first in number of citations. China ranked first in number of articles
published and in single country publications (SCP), while America surpassed
China to rank first in multiple country publications (MCP). In addition, a
collaboration network analysis showed tight collaborations among China,
America, South Korea, Netherlands, and other countries, with the top 10 major
research affiliations mostly from these countries. The top 10 high-frequency
words in this field are consistent with the field’s research hotspots. The
evolution trend of the discipline indicates that most citations come from
Physics/Materials/Chemistry journals. Factorial analysis plays an intuitive role in
determining research hotspots in this sphere. Keyword burst detection shows that
chitosan and endothelial cells are emerging research hotspots in this field.

Conclusion: This bibliometric studymaps out a fundamental knowledge structure
including countries, affiliations, authors, journals and keywords in this field of
research from 2010 to 2022. This study fills a gap in the field of bibliometrics and
provides a comprehensive perspective with broad prospects for this burgeoning
research area.
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1 Introduction

1.1 Current status of bone tissue engineering

With the development of biomedicine in recent years, scientists
have been exploring the field of bone defect treatments in depth.
Increasing numbers of scientists have carried out multi-level
research on bone tissue engineering to understand the
physiological structure of natural bone (Florencio-Silva et al.,
2015; Wubneh et al., 2018; Hart et al., 2020). Autologous bone
grafting (Fillingham and Jacobs, 2016; Stanovici et al., 2016) was
considered the clinical “gold standard” for treating bone tissue
defects in the past (García-Gareta et al., 2015; Schmidt, 2021).
Due to limitations of autologous bone transplantation, such as
infection, secondary injury and chronic pain (Dimitriou et al.,
2011; Wang and Yeung, 2017), bone tissue engineering has been
widely studied as an innovative therapy to reduce patient pain,
reduce the complexity of doctors’ operation, and accelerate the
recovery of bone tissue (Qi et al., 2021). Bone tissue engineering
is the process of culturing and growing numerous autologous
osteoblasts, bone marrow stromal cells, or chondrocytes in vitro
before implanting the cells on a biocompatible natural or synthetic
cell scaffold. The scaffolds are subsequently progressively broken
down and taken up by the extracellular matrix or the human body.
These biomaterial scaffolds can give cells a three-dimensional
environment in which to live, breathe, exchange gases, eliminate
waste, and develop on three-dimensional scaffolds that have already
been built. Following the implantation of the cell hybrid material at
the site of the bone defect, the transplanted bone cells multiply as the
biomaterial eventually degrades to enable the healing of the
damaged bone tissue (Chocholata et al., 2019).

Material selection is an important factor in determining the
success of bone defect repair. Metal materials were the earliest
materials used in bone tissue engineering, and titanium and
titanium alloys are still the preferred implant materials for oral
implants (Souza et al., 2019; Xie et al., 2020) and orthopaedics
(Fokter et al., 2016; Williams et al., 2016). However, metal materials
are not degradable and need to be removed in many cases, which not
only increases the difficulty of treatment, but also increases the
psychological pressure of patients. Bioceramic has been a popular
material in recent years, and hydroxyapatite is the most commonly
used example (Khan et al., 2021). Hydroxyapatite is an ideal material
for bone tissue engineering with outstanding biocompatibilities
(Zhou and Lee, 2011). In addition, biodegradable polymers have
been considered and used in bone tissue engineering by a growing
number of scientists (Aslam Khan et al., 2021; Guo et al., 2021).
Commonly studied polymer materials include gelatin (Zhang et al.,
2018), chitosan (LogithKumar et al., 2016), hyaluronic acid
(Saravanakumar et al., 2022), alginate (Hernández-González
et al., 2020), etc. Scaffolds composed of these single biomaterials
have their own advantages and disadvantages, leading to the
derivation of composite scaffolds composed of two or more
biomaterials. The composite scaffold composed of chitosan and
gelatin-based electrospun fiber has unique advantages in the
construction of scaffolds with high porosity (Venkatesan et al.,
2015). The characterization performance of the composite
scaffold composed of alginate and hydroxyapatite is better than
that of scaffolds composed of single biomaterial in the fields of bone

tissue regeneration, treatment of bone defect and drug delivery
(Sikkema et al., 2021).

1.2 Research status of 3D printing bioink in
bone tissue engineering

3D printing can create a structure that closely matches the
individual anatomy and physiology of patients with highly
personalized design and matching. Therefore, 3D printing has
become a major manufacturing technology in the medical field.
This technology has broad applications including stomatology,
tissue engineering and regenerative medicine (Liaw and
Guvendiren, 2017). Bioinks are inks that can be used in 3D
printing, and the ideal bioink used in the medical field can not
only provide three-dimensional space to support cells, but also
participate in creating the microenvironment required for cell
survival (Cidonio et al., 2019).

Because 3D printing can control the volume, geometry and
internal structure of tissue scaffolds, it is an important technology
for bone tissue engineering. 3D bioprinting methods for bone tissue
engineering and the invention of biocompatible bioinks have been
the main focus of research in this field. They play important roles in
homeostasis, supporting a multifaceted balance among cellular
function, cellular dynamics, and mechanical integrity (Zhang
et al., 2019). Multiple systems containing inkjet 3D printing-
based bioprinting (Chou et al., 2013), extrusion-based bioprinting
(Placone and Engler, 2018), and laser-based bioprinting
(Ashammakhi et al., 2019) have been invented.

1.3 Advantages of bibliometric analysis

Bibliometrics can analyze publications by applying literature
details and metrology as objects. Bibliographic systems and
bibliometric features are the main research objects of
bibliometrics and they adopt quantitative research methods such
as mathematics and statistics while studying the distribution
structure, quantitative relationship, changing law and quantitative
management of bibliographic information (Ge Y. et al., 2022; Li
et al., 2022). During the analysis process, relevant information
including authors, keywords, journals, countries, references, and
cooperation maps are harvested from related research fields
(Roldan-Valadez et al., 2019). The development of bibliometric
tools such as the R package “Bibliometrix” (Arruda et al., 2022)
and the software packages “CiteSpace” (Liu et al., 2022) and
“VOSviewer” (Huang et al., 2022) makes visual analysis of
documents more convenient. These programs have been widely
used in various fields, such as medicine (Youn et al., 2022), climate
(Han et al., 2022), materials science (Sun et al., 2022), and others. In
recent years, studies have indicated that using 3D printing bioink to
treat bone tissue defects has good prospect, however bibliometric
evaluation of this valuable field is currently lacking. To fill this gap,
this study aims to perform bibliometric evaluation of the literature
associated with the application of 3D printing bioink in bone tissue
engineering from the past 13 years (2010–2022). We will conduct a
systematic review of the current research situation of the main
researchers, periodicals and institutions for the field and predict
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coming research trends and future improvement prospects in this
field (Figure 1).

2 Materials and methods

2.1 Search strategy

This paper focuses on 3D printing bioink in bone tissue
engineering based on analysis of existing literature in the Web
of Science (WOS) database. This database was chosen because it
covers all areas related to medicine and is one of the most
authoritative academic databases (Marín-Marín et al., 2021).
The author systematically searched the citation index (SCI-
EXPANDED) of the Web of Science core collection for articles
published between 1 January 2010 and 31 December 2022 on
8 January 2023. To avoid bias, the document download process
was completed within 1 day (8 January 2023). On the
foundation of preceding studies, this study set the search
strategy as the following: TS=((“hydrogel” OR “bioink” OR
“ink” OR “biological ink”) AND (”3D printing” OR 3D)
AND bone tissue engineering). A total of 961 documents
were retrieved, and the author collated and identified the
retrieved documents and further verified the article

categories. 682 papers and review papers were ultimately
included, and Figure 2 indicates the flow chart of literature
inclusion.

2.2 Data analysis

Retrieved articles were screened by document type, publication
year, and Web of Science category. 682 documents were exported as
plain text files then imported into the VOSviewer (1.6.15.0) and
CiteSpace (6.1.6.0) software, and bibliometric analysis was
performed using the bibliometrix package (4.0.1) of R
software (4.2.2).

The VOSviewer (1.6.15.0) bibliometric analysis software
program analyzes underlying knowledge contained in
scientific literature and visualizes the collected data (Xia
et al., 2021). It can extract and analyze key information from
many documents and is often used to establish co-citation and
symbiotic networks (Vittori et al., 2022). The purpose of
VOSviewer (1.6.15.0) used in this study is to analyze inter-
country relations and research hotspots. For the analysis of
inter-country relations, the type of analysis was chosen as co-
authorship and the unit of analysis as countries. And to analyze
research hotspots, the type of analysis was selected as co-

FIGURE 1
Graphical summary.
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occurrence, and the unit of analysis was selected as keywords
plus. The counting method for all analyses is full counting.
CiteSpace (6.1.6.0) is a statistical analysis tool based on the Java
environment developed by Professor Chen Chaomei, which can
be used for bibliometric analysis and visualization. It can
analyze literature in a specific field and discover
improvement trends of related disciplines (Yao et al., 2020).
The CiteSpace (6.1.6.0) is used to analyze burst keywords and
the trend of discipline evolution. In time slicing, follow-up
analyzes were performed with years per slice of 2 years. Use
the burstness detection option to detect top 16 keywords with
the strongest citation bursts. At the same time, select the overlay
maps function to analyze the trend of discipline evolution, select
“Label Top N Journals” and “z Scores”, and then analyze the
journal biplot overlay. R software is a language and
environment widely used in the field of information
statistics. In this study, the Bibliometrix package (4.0.1) in R
(4.2.2) was used to analyze data and perform basic bibliometric
analysis. Most local cited sources were extracted in the source
option during the analysis. The information extracted by the
authors option includes most relevant affiliations and
corresponding author’s country. Meanwhile analyze the most
local cited documents, most frequent words and the word cloud
in the documents option. In the conceptual structure part, the
thematic map and factorial analysis are selected for elaboration,
and in the social structure section, the collaboration world map
is analyzed.

Analysis of the 682 documents screened by the above software
and programs provided results such as the most locally cited
documents, most locally cited sources, most relevant words,
country collaboration maps, factorial analysis, and thematic maps.

3 Bibliometric analysis and findings

3.1 Analysis of most localyl cited documents
and sources in the field

3.1.1 Most locally cited sources
The 425 most locally cited journals in the field corresponding

to the 682 included documents were analyzed, and the journals
were ranked according to the number of articles. The top ten
journals by number of articles are shown in Figure 3A, and it can be
seen that the Biomaterials journal ranks first with 4198. Acta
Biomater (2004) and Biofabrication (1624) ranked second and
third, respectively. However, it is notable that the total number of
articles in the second and third journals combined does not exceed
the number of articles in Biomaterials. This indicates that
Biomaterials has an authoritative super-status in the field of 3D
printing bioink and that it has an essential guiding function in
research in this field.

3.1.2 Most locally cited documents
We next analyzed the most locally cited documents in this field

by ranking the articles according to the number of citations in this
field (Figure 3B). The article “Bioink properties before, during and
after 3D bioprinting” published by Hölzl, K et al. in the
Biofabrication Journal in 2016 was cited 33 times in this research
field, with a total of 528 citations, ranking it first in number of
citations. This article discusses the characteristics of related bioinks
by taking the more common bioprinting methods (extrusion
bioprinting, orifice-free bioprinting and inkjet bioprinting) as
examples. Meanwhile, it additionally predicts the performance of
hydrogels containing living cells (Hölzl et al., 2016). Displaying the
most locally cited sources in the field can help researchers who
dabble in the field for the first time to select optimal articles for
selective reading.

3.2 Analysis of affiliations and countries

3.2.1 Most relevant affiliation
Analyzing 948 research institutions (universities), Figure 4A

reveals the ten major research institutions that published the
most articles in this field. Zhejiang University in the People’s
Republic of China (60) had the most relevant research
publications on the application of 3D printing bioink in bone
tissue engineering, followed by the University of Pennsylvania
in the United States (28) and Dankook University in South
Korea (26). This indicates that Zhejiang University has high
research achievements in the field of 3D printing bioink. The
top ten major research institutions in this field are affiliated with
the United States 4), China 3), South Korea 1), Ireland 1) and
the Netherlands 1), which indicates that Asia, North America
and Europe may have high research standards.

3.2.2 Corresponding author’s country
An analysis of the nationality of the corresponding authors

demonstrates that China dominates this field of research
(Figure 4B). Collaborations between scientists within one
country are represented by Single country publications (SCP),

FIGURE 2
Flow chart of the literature screening process.
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while the worldwide partnerships are represented by multiple
country publications (MCP). Our search determined that China
has the largest number of corresponding authors within this field,
with the United States ranks second. The Chinese SCP value far
exceeds that of other countries, while the MCP value of the
United States exceeds China’s. This may infer that China has
established capabilities to complete research projects in this field
relatively independently, while the United States has stronger
international cooperation capabilities. Analysis of the
corresponding author’s country also confirms results
quantifying main research institutions from another
perspective, and the number of corresponding authors in
countries with a large number of main research institutions is
more than that of other countries.

3.2.3 Analysis of the cooperative relationship
between countries

Based on the above two analyses, international collaborations
were filtered and visualized by number of publications to construct a
collaboration network based on the number of publications and
relationships between countries (Figures 4C, D). There are notably
differing degrees of cooperation among different countries. In
Figure 4C, the shades of different countries on the map represent
the number of articles from that country. The thickness of
connecting lines indicates the cooperative relationship between
two countries (regions), with wider connecting lines denoting
stronger cooperative relationships. Thinner lines indicate that,
although there is cooperation between countries, the cooperative
relationship is not very close. For example, China shows close

FIGURE 3
(A) The number of citations and the top ten highly cited journals in this field from 2010 to 2022. (B) The number of citations of highly cited
documents in this field and the top ten articles from 2010 to 2022.
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cooperation with the United States, the United Kingdom, Germany,
and South Korea, while the United States shows productive
cooperation with Iran, South Korea, and the Netherlands.

3.3 Analysis of keywords

Wenext analyzed themost frequent words across literature from
the field to indentify commonly used phrases and to measure their
frequency (Figure 5A). After sorting out the top ten high-frequency
words, “scaffolds (156)” appears the most. By searching the
WordCloud Map “number of words>50” (Figure 5B), we
revealed that the most frequently occurring words are consistent
with the results obtained for the word cloud. These two analyses
uncovered the most frequently occurring words in this field,
revealing which topics receive focus in the published research.

3.4 Analysis of research hotspots

VOSviewer was used to analyze keywords and subject headings
extracted from the titles and abstracts of 682 papers (Figure 6). As
seen in Figure 6A, cluster 1 is mainly discussion of in-vitro research
on 3D printing bioink in bone tissue engineering. Themain keyword
of cluster 2 is hydrogels, and this discusses the hydrogel materials

formed by mixing materials including hydroxyapatite. Cluster
3 largely discusses the relationship among mesenchymal stem
cells, stromal cells and extracellular matrix in bone tissue
engineering. Cluster 4 focuses on the differentiation and
proliferation of tissue structures such as collagen and
angiogenesis in bone tissue engineering. Cluster 5 generally
discusses the formation of bone and cartilage tissue in bone
tissue engineering. The keywords with the highest frequency are
“in-vitro”, “hydrogels”, “mesenchymal stem-cells”, “differentiation”
and “bone”, indicating that research on 3D printing bioink in bone
tissue engineering mainly focuses on material formation and tissue
differentiation.

We further used VOSviewer to color-code all keywords
according to average publication year (Figure 6B). This analysis
can visually distinguish when keywords occur, revealing trends,
evolutionary processes, and emerging areas of research.

3.5 Thematic map

Thematic Maps help identify conceptual evolution across
various topics by creating a thematic cluster from co-word
analysis. The program identifies clusters based on density and
centrality then names them according to the most frequently
occurring keywords in the cluster (Figure 7). Density indicates

FIGURE 4
(A) Top 10 most relevant affiliations. (B) Top 20 most productive countries. (C) Distribution of publications by countries and regions. (D) National
cooperation map.
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how often a cluster is internally linked, and centrality measures how
often a cluster (topic) is linked to other topics. High density indicates
greater development within a topic, while high centrality means
more connections to other topics, or a particular topic being central
to a greater field of study. In the thematic map, each quadrant has an
intuitive meaning. Density is represented on the vertical axis
(Y-axis), while centrality is represented on the horizontal axis
(Y-axis). The quadrant distribution is as follows:

The first quadrant (upper right) represents the topic of scaffold
osteogenesis, a quadrant that demonstrates the well-established
conceptual foundation and robustness of this field of study.

The second quadrant (upper left) is drug release and
reconstruction. This quadrant represents a well-developed but
isolated theme.

The third quadrant (lower left) is devoted to polymers and
nanocellulose, and this quadrant represents rising or disappearing themes.

The fourth quadrant (lower right) is repair of mesenchymal stem
cells. These topics have not been well researched and developed, but

they are often present in the research scope and may be a hot
research field in the future.

It is worth mentioning that “hydroxyapatite scaffolds” and
“marrow stromal cells” locate in the center of the four quadrants.
This is an interesting phenomenon, probably indicating that these
studies have been developed to a certain extent, but that the
relationship between disciplines is not close enough. As such,
these topics show research value but do not often appear in the
greater existing literature.

3.6 The trend of discipline evolution

The double-picture superposition of periodicals shows the citation
relationship between journals and co-cited periodicals, with citation
periodicals on the left and cited periodicals on the right. As shown in
Figure 8, the essential reference paths are the two purple paths. The upper
purple path represents that literature published in journals of

FIGURE 5
(A) Top 10 most relevant words. (B) The WordCloud.
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CHEMISTRY, MATERIALS, and PHYSICS is mainly cited by other
studies published within journals of PHYSICS, MATERIALS, and
CHEMISTRY. The lower purple path represents that literature

published in MOLECULAR, BIOLOGY, and GENETICS journals is
mainly cited by papers within PHYSICS, MATERIALS, and
CHEMISTRY journals.

FIGURE 6
(A) Keywords related to the application of 3D printing bioink in bone tissue engineering are divided into 5 clusters according to different colors.
Cluster 1: red; Cluster 2: green; Cluster 3: blue; Cluster 4: yellow; Cluster 5: purple. The dimension of the node shows the frequency of prevalence of the
word. (B) Visualizing keywords based on average publication year. Purple keywords appear earlier than yellow keywords.
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3.7 Factorial analysis and burst keywords

3.7.1 Factorial analysis
A review of selected literature resulted in some general

observations. First, clustering via factorial analysis resulted in
seven exclusive clusters (Figure 9A): mesenchymal stem cells;
fabrication; hydrogel; scaffolds; bone; stem cells; mechanical

properties; in vitro; differentiation. These classes are not mutually
exclusive and there is overlap between different categories.

3.7.2 Analysis of keywords with citation burst
Figure 9B shows the Top16 keywords with the shortest citation

burst time of 1 year. Keywords such as “bone marrow” (2010–2019),
“expression” (2010–2017), “mesenchymal stem cell” (2010–2017),

FIGURE 7
Strategic theme map.

FIGURE 8
Double-journal overlay of research on the application of 3D printing bioink in bone tissue engineering.
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and “stromal cell” (2012–2019) received the longest attention in the
past 13 years. In contrast, keywords such as “chitosan” (2020–2022)
and “endothelial cell” (2020–2022) appear for a short time and have
been used more frequently in recent years, indicating that these
keywords have recently attracted attention and may be potential
upcoming hotspots for future research.

4 Discussion

4.1 Research status

Through discussing the research trends of the seven categories of
factorial analysis, the multivariate relationships between various
field components can be revealed, intuitively highlighting the
current status of research in this area. As one of the most

transplanted tissues in the world bone is often used to treat
patients with congenital bone defects, trauma, infection, or tumor
resection (Graham et al., 2010). The main cellular components of
bone are osteoblasts that form bone and osteoclasts that resorb bone.
The activity-regulated balance of both phenomena is responsible for
bone formation and tissue repair (Salhotra et al., 2020). The main
functional cells responsible for bone tissue formation are osteoblasts,
which perform the synthesis, secretion, and mineralization of bone
matrix. (Kim et al., 2020). Osteoblasts can be derived from stem
cells, making stem cells key to the future of bone tissue engineering
and regeneration. Common stem cell populations in this field
include bone marrow mesenchymal stem cells, adipose tissue-
derived mesenchymal stem cells, dental pulp stem cells, human
umbilical vein endothelial cells, periosteum-derived stem cells, and
trabecular bone progenitor cells (Szpalski et al., 2012). Mesenchymal
stem cells have been widely studied in bone tissue engineering and

FIGURE 9
(A) A dendrogram showing the broadest evolution of 3D printing bioink in the discipline of bone tissue engineering. (B) A visualization of the top
16 citation bursts keywords produced by CiteSpace.
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regenerative medicine because of their extensive proliferation ability
and pluripotency (Naji et al., 2019; Tsiapalis and O’Driscoll, 2020).
Bone marrow mesenchymal stem cells are the most studied cell type
to date in this field. Bone tissue engineering scaffolds containing
bone marrow mesenchymal stem cells have the required mechanical
strength and also provide excellent cell delivery ability, with evenly
distributed cells improving bone formation ability in vivo (He et al.,
2012). To promote bone tissue regeneration, the scaffold structure
needs to have sufficient mechanical strength and be able to bear the
pressure of soft and hard tissues (Wang et al., 2019). Researchers
have been looking for materials with improved bone tissue
scaffolding properties, and alginate is one of the most common
materials used to make bioinks (Mrudulakumari Vasudevan et al.,
2021). Due to its chemical inertness and superior gel properties,
alginate can form bone tissue engineering scaffolds with more
stability and optimized mechanical properties (He et al., 2022).
Common types of scaffolds for bone tissue engineering include
films, hydrogels, fibers, and nanospheres (Chen et al., 2010). In
recent years, hydrogels have attracted interest in the field of bone
tissue engineering due to their unique physical properties including
swelling and diffusion capabilities (Hasani-Sadrabadi et al., 2020).
The elasticity, biodegradability, and other characteristics of
hydrogels mainly depend on the composition of the hydrogel.
Due to differences in composition, hydrogels are mainly divided
into solid (Coyne et al., 2020), semi-solid, (Hamd-Ghadareh et al.,
2022), and liquid hydrogels (Wang et al., 2022) according to their
physical properties. After 3D printing of bioink, further in vitro
research is required. Common in vitro studies include cell culture
and maintenance, cell viability assays, live-dead cell experiments,
mineralization studies, and more. Following a number of quality
tests, the hydrogels can be implanted in the living body. In vivo
experiments are then conducted to observe its osteogenic ability
(Huebsch, 2019).

The results of the strongest citation burst keywords analysis
show that chitosan and endothelial cells have received high
attention in recent years. Chitosan is the second most
abundant natural polymer on earth and has wide applications
in the field of biomaterials (Chang et al., 2022). Due to its unique
dynamic reversibility and excellent biological properties,
chitosan supramolecular hydrogel is considered an ideal
material for 3D bioprinting bioink in bone tissue engineering
(Xu J. et al., 2022). The vascular endothelial network also plays a
crucial role in bone tissue formation and regeneration.
Endothelial cells assist in vascularization while also
influencing bone physiology through cell-contact-dependent
mechanisms (Mutschall et al., 2020). For this reason,
researchers are increasingly focusing on endothelial cells, and
with improved bioink materials, 3D printing can promote
effective vascularization processes (Qiu et al., 2020).

4.2 Research hotspots and prospects

Bone and cartilage regeneration is one of the hottest areas of
research with 3D printed bioinks. Compared with traditional
techniques, the application of 3D printing bioink in bone tissue
engineering can more accurately control the structure and
mechanical properties of artificial scaffolds (Li et al., 2016). At

this stage and in the future, research in this field will likely be
devoted to developing bioinks with different properties. By adding
modified materials, bioinks could have better printability, stability,
mechanical load capacity, and osteogenesis potential (Midha et al.,
2019). The emerging research hotspot of microsphere structure can
provide biomimetic structure and biological performance for cell
growth and give scaffolds a more stable porous structure and a
higher specific surface area (He et al., 2020). Since microspheres can
provide a porous network, their pores can be loaded with growth
factors, drugs, or nanophase materials (Gupta et al., 2017). Presently,
the exploration of hydroxyapatite microspheres has become
popular. Hydroxyapatite microspheres can be prepared in several
ways including template, hydrothermal, spray drying,
microemulsion, and precipitation methods. Using polyvinyl
alcohol-modified hydroxyapatite microspheres as a bioink, 3D
scaffolds with strong mechanical properties and inorganic
components similar to natural bone can be successfully printed
(Wei et al., 2022). Metal ions can also modify hydroxyapatite
microspheres, such as carboxylated chitosan/silver-hydroxyapatite
hybrid microspheres. Because of the synergistic effect of silver, they
can also exhibit excellent antibacterial activity against
Staphylococcus aureus, allowing them to be used as an anti-
infection bone substitute material (Shen et al., 2017). In addition
to hydroxyapatite microspheres, materials such as alginate (Xu M.
et al., 2022) and ε-polylysine (Ge L. et al., 2022) have also been
studied to prepare microspheres. In the future, preparing materials
into microspheres and adding them to bioinks to improve properties
will become a research hotspot in 3D printing bioink for bone tissue
engineering. In recent years, the addition of bioactive glass to bioinks
has also attracted widespread attention from scientists (Zeimaran
et al., 2021). After bioactive glass is implanted into the human body,
bioactive hydroxyapatite can form over time, promoting bone tissue
regeneration. For example, copper-doped mesoporous bioactive
glass can improve the printability and printing accuracy of
bioinks and give the bioinks improved osteogenesis and
angiogenesis abilities (Zhu et al., 2022). At the same time, with
the deepening of the research, the researchers found that graphene
oxide (GO) can induce the differentiation of mesenchymal stem cells
into osteoblasts, which is helpful for the recovery of defective bone
tissue. As popular materials that can improve the physical and
chemical properties of scaffolds, metal and non-metal materials can
be combined with GO to exert a more excellent osteogenic effect. For
example, adding Fe3O4 to the scaffold material can greatly improve
the mechanical strength of the porous scaffold and improve the
antibacterial performance through the interaction with GO (Khan
et al., 2022c). The combined effect of zinc and GO can improve cell
viability and cell proliferation, thus becoming a potential biomaterial
for bone tissue engineering (Khan et al., 2022a). The addition of SiO2

can make the scaffold material containing GO have more excellent
cell adhesion ability, cell viability and proliferation ability (Khan
et al., 2022b). It can be seen that the combination of different metals
and non-metals with GO will have different effects, and the bioink
material belonging to the patient can be customized according to the
specific demands of the patient. To sum up, whether it is
microsphere technology, the combination of GO and metal or
non-metallic materials, or adding modified materials such as
bioactive glass to improve the performance of bioink, current
research is in the early phases of exploration. Future research will
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focus on improving bioinks to make them more suitable for bone
tissue engineering.

Although research into 3D printing bioink for bone tissue
engineering has grown in the past decade, its current limitations
cannot be ignored. Despite the high precision and repeatability of
3D printing, the main technical challenge remains to explore bioinks
with good biocompatibility and mechanical strength (Zhang et al.,
2021). Scientists are also working on exploring how to ensure
complete preservation and effective implantation of bioink during
the 3D printing process, as well as how to ensure good integration of
new bone grown in bone defects with the original bone tissue.
Personalized 3D printing technology is also a relatively new
technology (Kumar Gupta et al., 2022), therefore, there are still
certain obstacles in the supervision of printing products. Relevant
laws and regulations need to be established and improved to ensure
the sustainable development of 3D printing technology
(Prabhakaran et al., 2022). These limitations may also become a
research hotspot in the future of 3D printing bioink in the field of
bone tissue engineering.

5 Conclusion

Bone tissue defect is a common clinical disease. The long
treatment period of traditional treatment methods will cause
huge psychological pressure and economic burden to patients.
Therefore, the treatment of bone defects remains one of the major
clinical and scientific challenges. Surgical treatment is a traditional
method for treating bone defects, but problems such as long
treatment period and difficult operation have always plagued
doctors and patients. In recent years, the rapid development of
bone tissue engineering has provided new therapeutic ideas for
bone repair. Scaffold materials with bioactivity and
biodegradability gradually come into people’s sight. Bioactivity
promotes cell proliferation, while biodegradability can avoid
secondary surgery trauma to patients. By combining 3D
printing technology based on computer design and
manipulation, doctors can personalize design the stent shape
according to the patient’s actual situation based on the shape of
the bone defect. While reducing the economic and psychological
pressure of patients, formulate personalized treatment plans that
belong to patients to the greatest extent.

Research on the application of 3D printing bioink for bone tissue
engineering has attracted growing attention in the past decades. This
study includes 682 papers retrieved and screened from the Web of
Science database, and analyzed using the bibliometrix R package and
VOSviewer and CiteSpace software. The study found that China
ranks first in the number of publications in this field, while the SCP
of the United States surpasses China and ranks first.
Correspondingly, major research institutions are also
concentrated in the United States and China. This study
identifies key researchers and institutions globally involved in
this field. The journal Biomaterials is the most prolific journal in
the field, and Hölzl’s article published in the journal Biofabrication
in 2016 is the most cited in the field. The term “scaffolds” appears
most frequently across the field, indicating that it has received
extensive research and attention. Chitosan and endothelial cells

may additionally emerge as the focal point of future research. These
findings provide new researchers and policymakers with a
comprehensive perspective on the broader prospects of this
research field. It is undeniable that this study has certain
limitations, while innovatively using bibliometric methods to
analyze the application of 3D printing bioinks in bone tissue
engineering. This study is based on the analysis of previous
studies, and there will be a certain lag. Works including
unpublished articles, topics under research, and non-English
literature are not included in the statistics. It is worth noting that
in addition to basic research, attention should also be paid to the
results of translational research. The ability to shorten the time of
bone tissue reconstruction and reduce economic costs will promote
the transformation of 3D printing bioink from theoretical
experiments to clinical practice in the field of bone tissue
engineering.
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