52 research outputs found

    Visible-blind and solar-blind ultraviolet photodiodes based on (InxGa1-x)2O3

    Get PDF
    UV and deep-UV selective photodiodes from visible-blind to solar-blind were realized based on a Si-doped (InxGa1–x)2O3 thin film with a monotonic lateral variation of 0.0035<x<0.83. Such layer was deposited by employing a continuous composition spread approach relying on the ablation of a single segmented target in pulsed-laser deposition. The photo response signal is provided from a metal-semiconductor-metal structure upon backside illumination. The absorption onset was tuned from 4.83 to 3.22 eV for increasing x. Higher responsivities were observed for photodiodes fabricated from indium-rich part of the sample, for which an internal gain mechanism could be identified. VC 2016 AIP Publishing LLC

    Dielectric function in the spectral range (0.5–8.5)eV of an (Alx Ga1−x )2O3 thin film with continuous composition spread

    Get PDF
    We determined the dielectric function of the alloy system (AlxGa1−x)2O3 by spectroscopic ellipsometry in the wide spectral range from 0.5 eV to 8.5 eV and for Al contents ranging from x = 0.11 to x = 0.55. For the composition range x<0.4, we observe single phase material in the b-modification and for larger Al content also the occurrence of γ-(Al,Ga)2O3. We derived spectra of the refractive index and the absorption coefficient as well as energy parameters of electronic bandband transitions by model analysis of the dielectric function. The dependence of the dielectric functions lineshape and the energy parameters on x is highly continuous, reflecting theoretical expectations. The data presented here provide a basis for a deeper understanding of the electronic properties of this material system and may be useful for device engineering

    Electronic properties of shallow level defects in ZnO grown by pulsed laser deposition

    Get PDF
    We have used deep level transient spectroscopy (DLTS) to characterise four defects with shallow levels in ZnO grown by pulsed laser deposition (PLD). These defects all have DLTS peaks below 100 K. From DLTS measurements and Arrhenius plots we have calculated the energy levels of these defects as 31 meV, 64 meV, 100 meV and 140 meV, respectively, below the conduction band. The 100 meV defect displayed metastable behaviour: Annealing under reverse bias at temperatures of above 130 K introduced it while annealing under zero bias above 110 K removed it. The 64 meV and 140 meV defects exhibited a strong electric field assisted emission, indicating that they may be donors

    Electronic properties of shallow level defects in ZnO grown by pulsed laser deposition

    Get PDF
    We have used deep level transient spectroscopy (DLTS) to characterise four defects with shallow levels in ZnO grown by pulsed laser deposition (PLD). These defects all have DLTS peaks below 100 K. From DLTS measurements and Arrhenius plots we have calculated the energy levels of these defects as 31 meV, 64 meV, 100 meV and 140 meV, respectively, below the conduction band. The 100 meV defect displayed metastable behaviour: Annealing under reverse bias at temperatures of above 130 K introduced it while annealing under zero bias above 110 K removed it. The 64 meV and 140 meV defects exhibited a strong electric field assisted emission, indicating that they may be donors

    Lattice parameters and Raman-active phonon modes of β-(AlxGa1−x)2O3

    Get PDF
    We present X-ray diffraction and Raman spectroscopy investigations of a (100)-oriented (AlxGa1–x)2O3 thin film on MgO (100) and bulk-like ceramics in dependence on their composition. The thin film grown by pulsed laser deposition has a continuous lateral composition spread allowing to determine precisely the dependence of the phonon mode properties and lattice parameters on the chemical composition. For x<0.4, we observe the single-phase b-modification. Its lattice parameters and phonon energies depend linearly on the composition. We determined the slopes of these dependencies for the individual lattice parameters and for nine Raman lines, respectively. While the lattice parameters of the ceramics follow Vegard’s rule, deviations are observed for the thin film. This deviation has only a small effect on the phonon energies, which show a reasonably good agreement between thin film and ceramics

    Lattice parameters and Raman-active phonon modes of (InxGa1–x)2O3 for x < 0.4

    Get PDF
    We present X-ray diffraction and Raman spectroscopy investigations of (InxGa1–x)2O3 thin films and bulk-like ceramics in dependence of their composition. The thin films grown by pulsed laser deposition have a continuous lateral composition spread allowing the determination of phonon mode properties and lattice parameters with high sensitivity to the composition from a single 2-in. wafer. In the regime of low indium concentration, the phonon energies depend linearly on the composition and show a good agreement between both sample types. We determined the slopes of these dependencies for eight different Raman modes. While the lattice parameters of the ceramics follow Vegard’s rule, deviations are observed for the thin films. Further, we found indications of the highpressure phase InGaO3 II in the thin films above a critical indium concentration, its value depending on the type of substrate

    Indium Gallium Oxide Alloys: Electronic Structure, Optical Gap, Surface Space Charge, and Chemical Trends within Common-Cation Semiconductors

    Get PDF
    The electronic and optical properties of (InxGa{1–x})_{2}O_{3} alloys are highly tunable, giving rise to a myriad of applications including transparent conductors, transparent electronics, and solar-blind ultraviolet photodetectors. Here, we investigate these properties for a high quality pulsed laser deposited film which possesses a lateral cation composition gradient (0.01 ≤ x ≤ 0.82) and three crystallographic phases (monoclinic, hexagonal, and bixbyite). The optical gaps over this composition range are determined, and only a weak optical gap bowing is found (b = 0.36 eV). The valence band edge evolution along with the change in the fundamental band gap over the composition gradient enables the surface space-charge properties to be probed. This is an important property when considering metal contact formation and heterojunctions for devices. A transition from surface electron accumulation to depletion occurs at x ∼ 0.35 as the film goes from the bixbyite In_{2}O_{3} phase to the monoclinic β-Ga_{2}O_{3} phase. The electronic structure of the different phases is investigated by using density functional theory calculations and compared to the valence band X-ray photoemission spectra. Finally, the properties of these alloys, such as the n-type dopability of In_{2}O_{3} and use of Ga_{2}O_{3} as a solar-blind UV detector, are understood with respect to other common-cation compound semiconductors in terms of simple chemical trends of the band edge positions and the hydrostatic volume deformation potential

    Program FFlexCom — High frequency flexible bendable electronics for wireless communication systems

    Get PDF
    Today, electronics are implemented on rigid substrates. However, many objects in daily-life are not rigid — they are bendable, stretchable and even foldable. Examples are paper, tapes, our body, our skin and textiles. Until today there is a big gap between electronics and bendable daily-life items. Concerning this matter, the DFG Priority Program FFlexCom aims at paving the way for a novel research area: Wireless communication systems fully integrated on an ultra-thin, bendable and flexible piece of plastic or paper. The Program encompasses 13 projects led by 25 professors. By flexibility we refer to mechanical flexibility, which can come in flavors of bendability, foldability and, stretchability. In the last years the speed of flexible devices has massively been improved. However, to enable functional flexible systems and operation frequencies up to the sub-GHz range, the speed of flexible devices must still be increased by several orders of magnitude requiring novel system and circuit architectures, component concepts, technologies and materials
    corecore