34 research outputs found

    Increased Expression of the Auxiliary β(2)-subunit of Ventricular L-type Ca(2+) Channels Leads to Single-Channel Activity Characteristic of Heart Failure

    Get PDF
    BACKGROUND: Increased activity of single ventricular L-type Ca(2+)-channels (L-VDCC) is a hallmark in human heart failure. Recent findings suggest differential modulation by several auxiliary β-subunits as a possible explanation. METHODS AND RESULTS: By molecular and functional analyses of human and murine ventricles, we find that enhanced L-VDCC activity is accompanied by altered expression pattern of auxiliary L-VDCC β-subunit gene products. In HEK293-cells we show differential modulation of single L-VDCC activity by coexpression of several human cardiac β-subunits: Unlike β(1) or β(3) isoforms, β(2a) and β(2b) induce a high-activity channel behavior typical of failing myocytes. In accordance, β(2)-subunit mRNA and protein are up-regulated in failing human myocardium. In a model of heart failure we find that mice overexpressing the human cardiac Ca(V)1.2 also reveal increased single-channel activity and sarcolemmal β(2) expression when entering into the maladaptive stage of heart failure. Interestingly, these animals, when still young and non-failing (“Adaptive Phase”), reveal the opposite phenotype, viz : reduced single-channel activity accompanied by lowered β(2) expression. Additional evidence for the cause-effect relationship between β(2)-subunit expression and single L-VDCC activity is provided by newly engineered, double-transgenic mice bearing both constitutive Ca(V)1.2 and inducible β(2) cardiac overexpression. Here in non-failing hearts induction of β(2)-subunit overexpression mimicked the increase of single L-VDCC activity observed in murine and human chronic heart failure. CONCLUSIONS: Our study presents evidence of the pathobiochemical relevance of β(2)-subunits for the electrophysiological phenotype of cardiac L-VDCC and thus provides an explanation for the single L-VDCC gating observed in human and murine heart failure

    Is there a local antibacterial effect of sodium chloride?

    No full text

    Reduction of body temperature governs neutrophil retention in hibernating and nonhibernating animals by margination

    No full text
    <p>Low body temperature leads to decrease of circulating neutrophils due to margination in hibernating and nonhibernating animals. Hibernation consists of periods of low metabolism, called torpor, interspersed by euthermic arousal periods. During deep and daily (shallow) torpor, the number of circulating leukocytes decreases, although circulating cells, is restored to normal numbers upon arousal. Here, we show that neutropenia, during torpor, is solely a result of lowering of body temperature, as a reduction of circulating also occurred following forced hypothermia in summer euthermic hamsters and rats that do not hibernate. Splenectomy had no effect on reduction in circulating neutrophils during torpor. Margination of neutrophils to vessel walls appears to be the mechanism responsible for reduced numbers of neutrophils in hypothermic animals, as the effect is inhibited by pretreatment with dexamethasone. In conclusion, low body temperature in species that naturally use torpor or in nonhibernating species under forced hypothermia leads to a decrease of circulating neutrophils as a result of margination. These findings may be of clinical relevance, as they could explain, at in least part, the benefits and drawbacks of therapeutic hypothermia as used in trauma patients and during major surgery.</p>
    corecore