3,270 research outputs found

    Fission decay of N = Z nuclei at high angular momentum: 60^{60}Zn

    Get PDF
    Using a unique two-arm detector system for heavy ions (the BRS, binary reaction spectrometer) coincident fission events have been measured from the decay of 60^{60}Zn compound nuclei formed at 88MeV excitation energy in the reactions with 36^{36}Ar beams on a 24^{24}Mg target at Elab(36E_{lab}(^{36}Ar) = 195 MeV. The detectors consisted of two large area position sensitive (x,y) gas telescopes with Bragg-ionization chambers. From the binary coincidences in the two detectors inclusive and exclusive cross sections for fission channels with differing losses of charge were obtained. Narrow out-of-plane correlations corresponding to coplanar decay are observed for two fragments emitted in binary events, and in the data for ternary decay with missing charges from 4 up to 8. After subtraction of broad components these narrow correlations are interpreted as a ternary fission process at high angular momentum through an elongated shape. The lighter mass in the neck region consists dominantly of two or three-particles. Differential cross sections for the different mass splits for binary and ternary fission are presented. The relative yields of the binary and ternary events are explained using the statistical model based on the extended Hauser-Feshbach formalism for compound nucleus decay. The ternary fission process can be described by the decay of hyper-deformed states with angular momentum around 45-52 hbarhbar.Comment: 23 pages, 25 figure

    Structure of 10Be from the 12C 12C,14O 10Be reaction

    Get PDF
    The 12C 12C,14O two proton pick up reaction has been measured at 211.4 MeV incident energy to study the structure of states of 10Be up to excitation energies of 12 MeV. The measured partial angular distributions show pronounced oscillatory shapes, which were described by coupled reaction channels calculations. Spin parity assignments could be derived from these characteristic shapes and two definite assignments have been made. The state at 11.8 MeV has been identified as the 4 member of the ground state band, and the state at 10.55 MeV is assigned J pi 3 . At 5.96 MeV only the 1 1 member of the known 2 2 1 1 doublet is populated. The angular distribution of the peak at 9.50 MeV, which consists of several unresolved states, has been unfolded using contributions from known states at 9.56 MeV, 2 , and 9.27 MeV, 4 . The inclusion of a state at 9.4 MeV reported by Daito it et al. from the 10B t,3He 10Be reaction and tentatively assigned 3 improved the fit considerably. A K 2 band is formed with the 2 2 state as the band head and the 3 state as the second member. The structures of the K pi 0 1, 2 2, and 1 1 bands are discusse

    Role of Umklapp Processes in Conductivity of Doped Two-Leg Ladders

    Full text link
    Recent conductivity measurements performed on the hole-doped two-leg ladder material Sr14xCaxCu24O41\mathrm{Sr_{14-x}Ca_xCu_{24}O_{41}} reveal an approximately linear power law regime in the c-axis DC resistivity as a function of temperature for x=11x=11. In this work, we employ a bosonic model to argue that umklapp processes are responsible for this feature and for the high spectral weight in the optical conductivity which occurs beyond the finite frequency Drude-like peak. Including quenched disorder in our model allows us to reproduce experimental conductivity and resistivity curves over a wide range of energies. We also point out the differences between the effect of umklapp processes in a single chain and in the two-leg ladder.Comment: 10 pages, 2 figure

    Variability and homogeneity of cardiovascular magnetic resonance myocardial T2-mapping in volunteers compared to patients with edema

    Get PDF
    BACKGROUND: The aim of the study was to test the reproducibility and variability of myocardial T2 mapping in relation to sequence type and spatial orientation in a large group of healthy volunteers. For control T2 mapping was also applied in patients with true edema. Cardiovascular magnetic resonance (CMR) T2-mapping has potential for the detection and quantification of myocardial edema. Clinical experience is limited so far. The variability and potential pitfalls in broad application are unknown. METHODS: Healthy volunteers (n = 73, 35 +/- 13 years) and patients with edema (n = 28, 55 +/- 17 years) underwent CMR at 1.5 T. Steady state free precession (SSFP) cine loops and T2-weighted spin echo images were obtained. In patients, additionally late gadolinium enhancement images were acquired. We obtained T2 maps in midventricular short axis (SAX) and four-chamber view (4CV) based on images with T2 preparation times of 0, 24, 55 ms and compared fast low angle shot (FLASH) and SSFP readout. 10 volunteers were scanned twice on separate days. Two observers analysed segmental and global T2 per slice. RESULTS: In volunteers global myocardial T2 systematically differed depending on image orientation and sequence (FLASH 52 +/- 5 vs. SSFP 55 +/- 5 ms in SAX and 57 +/- 6 vs. 59 +/- 6 ms in 4CV; p /= 70 ms. Mean intraobserver variability was 1.07 +/- 1.03 ms (r = 0.94); interobserver variability was 1.6 +/- 1.5 ms (r = 0.87). The coefficient of variation for repeated scans was 7.6% for SAX and 6.6% for 4CV. Mapping revealed focally increased T2 (73 +/- 9 vs. 51 +/- 3 ms in remote myocardium; p < 0.0001) in all patients with edema. CONCLUSIONS: Myocardial T2 mapping is technically feasible and highly reproducible. It can detect focal edema und differentiate it from normal myocardium. Increased T2 was found in some volunteers most likely due to partial volume and residual motion

    Numerical Evidence of Luttinger and Fermi Liquid Behaviour in the 2D Hubbard Model

    Full text link
    The two dimensional Hubbard model with a single spin-up electron interacting with a finite density of spin-down electrons is studied using the quantum Monte Carlotechnique, a new conjugate gradient method for the evaluation of the Edwards wavefunction ansatz, and the standard second order perturbation theory. We performed simulations up to 242 sites at U/t=4U/t=4 reaching the zero temperature properties with no ``fermion sign problem'' and found a surprisingly good accuracy of the Edwards wavefunction ansatz at low density or low doping. The conjugate gradient method was then applied to system up to 1922 sites and infinite UU for the Edwards state. Fermi liquid theory seems to remain stable in 2D for all cases studied with the exception of the half filling case where a ``Luttinger like behavior'' survives in the Hubbard model , yielding a vanishing quasiparticle weight in the thermodynamic limit.Comment: 10 pages + 4 pictures, RevTex, SISSA 121/93/CM/M

    On the state dependency of fast feedback processes in (palaeo) climate sensitivity

    Get PDF
    Palaeo data have been frequently used to determine the equilibrium (Charney) climate sensitivity SaS^a, and - if slow feedback processes (e.g. land ice-albedo) are adequately taken into account - they indicate a similar range as estimates based on instrumental data and climate model results. Most studies implicitly assume the (fast) feedback processes to be independent of the background climate state, e.g., equally strong during warm and cold periods. Here we assess the dependency of the fast feedback processes on the background climate state using data of the last 800 kyr and a conceptual climate model for interpretation. Applying a new method to account for background state dependency, we find Sa=0.61±0.06S^a=0.61\pm0.06 K(Wm2^{-2})1^{-1} using the latest LGM temperature reconstruction and significantly lower climate sensitivity during glacial climates. Due to uncertainties in reconstructing the LGM temperature anomaly, SaS^a is estimated in the range Sa=0.550.95S^a=0.55-0.95 K(Wm2^{-2})1^{-1}.Comment: submitted to Geophysical Research Letter

    Spatially resolved simulation of a radio frequency driven micro atmospheric pressure plasma jet and its effluent

    Full text link
    Radio frequency driven plasma jets are frequently employed as efficient plasma sources for surface modification and other processes at atmospheric pressure. The radio-frequency driven micro atmospheric pressure plasma jet (μ\muAPPJ) is a particular variant of that concept whose geometry allows direct optical access. In this work, the characteristics of the μ\muAPPJ operated with a helium-oxygen mixture and its interaction with a helium environment are studied by numerical simulation. The density and temperature of the electrons, as well as the concentration of all reactive species are studied both in the jet itself and in its effluent. It is found that the effluent is essentially free of charge carriers but contains a substantial amount of activated oxygen (O, O3_3 and O2(1Δ)_2(^1\Delta)). The simulation results are verified by comparison with experimental data

    Particle-gamma coincidences and coplanarity in the 32S+24Mg^{32}S+^{24}Mg binary reaction

    Get PDF
    The reaction 32S (165.4 MeV) + 24Mg is studied using the binary reaction spec- trometer (BRS) coupled to the Euroball germanium array. Particle-particle-gamma and particle-gamma-gamma coincidences have been examined. The Z-identification, position and energy information for binary reaction products are shown together with the Doppler-shift corrected gamma-rays emitted from the fragments. Recent reports of evi- dence for hyper-deformation from angular correlations in similar data are also in- vestigated. Analogous out-of-plane angular correlations are observed but attributed to reactions with the target contaminants 16O and 12C

    Current T(1) and T(2) mapping techniques applied with simple thresholds cannot discriminate acute from chronic myocadial infarction on an individual patient basis: a pilot study

    Get PDF
    BACKGROUND: Studying T1- and T2-mapping for discrimination of acute from chronic myocardial infarction (AMI, CMI). METHODS: Eight patients with AMI underwent CMR at 3 T acutely and after >3 months. Imaging techniques included: T2-weighted imaging, late enhancement (LGE), T2-mapping, native and post-contrast T1-mapping. Myocardial T2- and T1-relaxation times were determined for every voxel. Abnormal voxels as defined by having T2- and T1-values beyond a predefined threshold (T2 > 50 ms, native T1 > 1250 ms and post-contrast T1 delete acute infarction; unfortunately this is not possible in your web interface) acute infarction only in half of the subjects. Abnormal T2-values were also present in subjects with CMI, thereby matching the chronically infarcted territory in some. Abnormal native T1 times were present in voxels with AMI in 5/8 subjects, but also remote from the infarcted territory in four. In CMI, abnormal native T1 values corresponded with infarcted voxels, but were also abnormal remote from the infarcted territory. Voxels with abnormal post-contrast T1-relaxation times agreed well with LGE in AMI and CMI. CONCLUSIONS: In this pilot-study, T2- and T1-mapping with simple thresholds did not facilitate the discrimination of AMI and CMI

    Staggered orbital currents in the half-filled two-leg ladder

    Get PDF
    Using Abelian bosonization with a careful treatment of the Klein factors, we show that a certain phase of the half-filled two-leg ladder, previously identified as having spin-Peierls order, instead exhibits staggered orbital currents with no dimerization.Comment: 8 pages, 2 figures. Final versio
    corecore