6 research outputs found

    Cerebrospinal fluid extracellular vesicle enrichment for protein biomarker discovery in neurological disease; multiple sclerosis

    Get PDF
    The discovery of disease biomarkers, along with the use of “liquid biopsies” as a minimally invasive source of biomarkers, continues to be of great interest. In inflammatory diseases of the central nervous system (CNS), cerebrospinal fluid (CSF) is the most obvious biofluid source. Extracellular vesicles (EVs) are also present in CSF and are thought to be potential “biomarker treasure chests”. However, isolating these CSF-derived EVs remains challenging. This small-scale pilot study developed and tested a protocol to enrich for CSF-EVs, both in relapsing remitting multiple sclerosis (RRMS) CSF and controls. These were subsequently compared, using an aptamer based proteomics array, SOMAscan™. EVs were enriched from RRMS patient (n = 4) and non-demyelinating control (idiopathic intracranial hypertension (IIH) (n = 3)) CSF using precipitation and mini size-exclusion chromatography (SEC). EV-enriched fractions were selected using pre-defined EV characteristics, including increased levels of tetraspanins. EVs and paired CSF were analysed by SOMAscan™, providing relative abundance data for 1128 proteins. CSF-EVs were characterised, revealing exosome-like features: rich in tetraspanins CD9 and CD81, size ~100 nm, and exosome-like morphology by TEM. Sufficient quantities of, SOMAscan™ compatible, EV material was obtained from 5 ml CSF for proteomics analysis. Overall, 348 and 580 proteins were identified in CSF-EVs and CSF, respectively, of which 50 were found to be significantly (t-test) and exclusively enriched in RRMS CSF-EVs. Selected proteins, Plasma kallikrein and Apolipoprotein-E4, were further validated by western blot and appeared increased in CSF-EVs compared to CSF. Functional enrichment analysis of the 50 enriched proteins revealed strong associations with biological processes relating to MS pathology and also extracellular regions, consistent with EV enrichment. This pilot study demonstrates practicality for EV enrichment in CSF derived from patients with MS and controls, allowing detailed analysis of protein profiles that may offer opportunities to identify novel biomarkers and therapeutic approaches in CNS inflammatory disease

    Differences in white matter detected by ex vivo 9.4T MRI are associated with axonal changes in the R6/1 model of Huntington’s Disease

    Get PDF
    White matter (WM) volume loss has been reported in people with Huntington’s disease (HD), but the cellular basis of this deficit remains to be elucidated. To address this, we assessed ex vivo WM microstructure in the transgenic R6/1 mouse model of HD with magnetic resonance imaging (MRI) and studied the neurobiological basis of the MRI brain signals with histological and electron microscopy analyses in a separate cohort of age- and sex-matched mice. Differences in the macromolecular proton fraction (MPF) from quantitative magnetization transfer (qMT) as a proxy myelin measure, and the intra-axonal signal fraction (FR) from the composite hindered and restricted model of diffusion (CHARMED) as a proxy marker of axon density, were assessed alongside diffusion tensor imaging (DTI) parameters. A tractometry approach was employed to inspect region-specific differences across the corpus callosum (CC). Furthermore, voxel-based morphometry (VBM) and tract-based spatial statistics (TBSS) were used to explore brain-wise WM macro- and microstructure abnormalities. To gain insight into disease-associated impairments in attentional and visuospatial processing, a third cohort of age-matched mice was assessed with the 5-choice serial reaction time task (5-CSRTT). We report cognitive impairments in R6/1 mice and, by evaluating MRI and light and electron microscopy results, we show that this HD mouse model presents disruptions in axonal morphology (i.e. less complex, thinner axons) and organization (i.e. more densely packed axons). Furthermore, we show that, at least early in disease progression, R6/1 mice present a reduction in the expression or content of myelin-associated proteins without significant alterations in the structure of myelin sheaths. Finally, our findings indicate that neuroinflammation-driven glial and axonal swelling might also affect this mouse model early in disease progression. Crucially, we demonstrate the potential of FR, an in vivo estimate of axon density, as a novel MRI biomarker of HD-associated changes in WM microstructure

    Lumican inhibits collagen deposition in tissue engineered cartilage

    No full text
    Lumican is a glycoprotein that is found in the extracellular matrix of many connective tissues, including cartilage. It is a member of the small leucine-rich repeat proteoglycans family and along with two others, decorin and fibromodulin, has the capacity to bind to fibrillar collagens and limit their growth. Cartilage tissue engineering provides a potential method for the production of three-dimensional tissue for implantation into eroded joints. Many studies have demonstrated the growth of cartilage in vitro. However in all cases, biochemical analysis of the tissue revealed a significant deficit in the collagen content. We have now tested the hypothesis that the reduced collagen accumulation in engineered cartilage is a result of over-expression of decorin, fibromodulin or lumican. We have found that the lumican gene and protein are both over-expressed in engineered compared to natural cartilage whereas this is not the case for decorin or fibromodulin. Using a small hairpin lumican antisense sequence we were able to knockdown the lumican gene and protein expression in chondrocytes being used for tissue engineering. This resulted in increased accumulation of type II collagen (the major collagen of cartilage) whilst there was no significant alteration in the proteoglycan content. Furthermore, the antisense knockdown of lumican resulted in an increase in the average collagen fibril diameter measured by transmission electron microscopy. These results suggest that lumican plays a pivotal role in the development of tissue engineered cartilage and that regulation of this protein may be important for the production of high-quality implants
    corecore