1,098 research outputs found
Towards Autopoietic Computing
A key challenge in modern computing is to develop systems that address
complex, dynamic problems in a scalable and efficient way, because the
increasing complexity of software makes designing and maintaining efficient and
flexible systems increasingly difficult. Biological systems are thought to
possess robust, scalable processing paradigms that can automatically manage
complex, dynamic problem spaces, possessing several properties that may be
useful in computer systems. The biological properties of self-organisation,
self-replication, self-management, and scalability are addressed in an
interesting way by autopoiesis, a descriptive theory of the cell founded on the
concept of a system's circular organisation to define its boundary with its
environment. In this paper, therefore, we review the main concepts of
autopoiesis and then discuss how they could be related to fundamental concepts
and theories of computation. The paper is conceptual in nature and the emphasis
is on the review of other people's work in this area as part of a longer-term
strategy to develop a formal theory of autopoietic computing.Comment: 10 Pages, 3 figure
General moments of the inverse real Wishart distribution and orthogonal Weingarten functions
Let be a random positive definite symmetric matrix distributed according
to a real Wishart distribution and let be its inverse
matrix. We compute general moments explicitly. To do so, we employ the orthogonal Weingarten
function, which was recently introduced in the study for Haar-distributed
orthogonal matrices. As applications, we give formulas for moments of traces of
a Wishart matrix and its inverse.Comment: 29 pages. The last version differs from the published version, but it
includes Appendi
Solar Mikheyev-Smirnov-Wolfenstein Effect with Three Generations of Neutrinos
Under the assumption that the density variation of the electrons can be
approximated by an exponential function, the solar Mikheyev-Smirnov-Wolfenstein
effect is treated for three generations of neutrinos. The generalized
hypergeometric functions that result from the exact solution of this problem
are studied in detail, and a method for their numerical evaluation is
presented. This analysis plays a central role in the determination of neutrino
masses, not only the differences of their squares, under the assumption of
universal quark-lepton mixing.Comment: 22 pages, LaTeX, including 2 figure
Pulsational Mapping of Calcium Across the Surface of a White Dwarf
We constrain the distribution of calcium across the surface of the white
dwarf star G29-38 by combining time series spectroscopy from Gemini-North with
global time series photometry from the Whole Earth Telescope. G29-38 is
actively accreting metals from a known debris disk. Since the metals sink
significantly faster than they mix across the surface, any inhomogeneity in the
accretion process will appear as an inhomogeneity of the metals on the surface
of the star. We measure the flux amplitudes and the calcium equivalent width
amplitudes for two large pulsations excited on G29-38 in 2008. The ratio of
these amplitudes best fits a model for polar accretion of calcium and rules out
equatorial accretion.Comment: Accepted to the Astrophysical Journal. 16 pages, 10 figures
Pain outcomes in patients with bone metastases from advanced cancer: assessment and management with bone-targeting agents
Bone metastases in advanced cancer frequently cause painful complications that impair patient physical activity and negatively affect quality of life. Pain is often underreported and poorly managed in these patients. The most commonly used pain assessment instruments are visual analogue scales, a single-item measure, and the Brief Pain Inventory Questionnaire-Short Form. The World Health Organization analgesic ladder and the Analgesic Quantification Algorithm are used to evaluate analgesic use. Bone-targeting agents, such as denosumab or bisphosphonates, prevent skeletal complications (i.e., radiation to bone, pathologic fractures, surgery to bone, and spinal cord compression) and can also improve pain outcomes in patients with metastatic bone disease. We have reviewed pain outcomes and analgesic use and reported pain data from an integrated analysis of randomized controlled studies of denosumab versus the bisphosphonate zoledronic acid (ZA) in patients with bone metastases from advanced solid tumors. Intravenous bisphosphonates improved pain outcomes in patients with bone metastases from solid tumors. Compared with ZA, denosumab further prevented pain worsening and delayed the need for treatment with strong opioids. In patients with no or mild pain at baseline, denosumab reduced the risk of increasing pain severity and delayed pain worsening along with the time to increased pain interference compared with ZA, suggesting that use of denosumab (with appropriate calcium and vitamin D supplementation) before patients develop bone pain may improve outcomes. These data also support the use of validated pain assessments to optimize treatment and reduce the burden of pain associated with metastatic bone disease
"Meaning" as a sociological concept: A review of the modeling, mapping, and simulation of the communication of knowledge and meaning
The development of discursive knowledge presumes the communication of meaning
as analytically different from the communication of information. Knowledge can
then be considered as a meaning which makes a difference. Whereas the
communication of information is studied in the information sciences and
scientometrics, the communication of meaning has been central to Luhmann's
attempts to make the theory of autopoiesis relevant for sociology. Analytical
techniques such as semantic maps and the simulation of anticipatory systems
enable us to operationalize the distinctions which Luhmann proposed as relevant
to the elaboration of Husserl's "horizons of meaning" in empirical research:
interactions among communications, the organization of meaning in
instantiations, and the self-organization of interhuman communication in terms
of symbolically generalized media such as truth, love, and power. Horizons of
meaning, however, remain uncertain orders of expectations, and one should
caution against reification from the meta-biological perspective of systems
theory
Effectiveness of Denitrifying Bioreactors on Water Pollutant Reduction from Agricultural Areas
HighlightsDenitrifying woodchip bioreactors treat nitrate-N in a variety of applications and geographies.This review focuses on subsurface drainage bioreactors and bed-style designs (including in-ditch).Monitoring and reporting recommendations are provided to advance bioreactor science and engineering. Denitrifying bioreactors enhance the natural process of denitrification in a practical way to treat nitrate-nitrogen (N) in a variety of N-laden water matrices. The design and construction of bioreactors for treatment of subsurface drainage in the U.S. is guided by USDA-NRCS Conservation Practice Standard 605. This review consolidates the state of the science for denitrifying bioreactors using case studies from across the globe with an emphasis on full-size bioreactor nitrate-N removal and cost-effectiveness. The focus is on bed-style bioreactors (including in-ditch modifications), although there is mention of denitrifying walls, which broaden the applicability of bioreactor technology in some areas. Subsurface drainage denitrifying bioreactors have been assessed as removing 20% to 40% of annual nitrate-N loss in the Midwest, and an evaluation across the peer-reviewed literature published over the past three years showed that bioreactors around the world have been generally consistent with that (N load reduction median: 46%; mean ±SD: 40% ±26%; n = 15). Reported N removal rates were on the order of 5.1 g N m-3 d-1 (median; mean ±SD: 7.2 ±9.6 g N m-3 d-1; n = 27). Subsurface drainage bioreactor installation costs have ranged from less than 27,000, with estimated cost efficiencies ranging from less than 20 kg-1 N year-1 (although they can be as high as $48 kg-1 N year-1). A suggested monitoring setup is described primarily for the context of conservation practitioners and watershed groups for assessing annual nitrate-N load removal performance of subsurface drainage denitrifying bioreactors. Recommended minimum reporting measures for assessing and comparing annual N removal performance include: bioreactor dimensions and installation date; fill media size, porosity, and type; nitrate-N concentrations and water temperatures; bioreactor flow treatment details; basic drainage system and bioreactor design characteristics; and N removal rate and efficiency
- …