49 research outputs found

    Development of Mass Spectrometric Methods for Tissue Imaging and LC-based Quantification of Glycosphingolipids/Gangliosides including Tay-Sachs disease based Neuraminidase-deficient Mouse Models and Human Gut Microbiota

    Get PDF
    Tay-Sachs disease (TSD) is an autosomal-recessive genetic disorder which results in the dysfunction of the metabolic enzyme hexosaminidase A (HexA). It leads to severe lysosomal storage of acidic glycosphingolipid, namely ganglioside GM2, and early fatalities for humans with the infantile on-set form. Despite fifty years of research, to date there is no effective treatment beyond palliative care. It was found that mouse models of HexA deficiency display only moderate GM2 accumulation, which was connected with a late onset neuronal phenotype. Therefore neuraminidases were investigated as possible bypass enzymes for the degradation of GM2 and offer a new opportunity for therapeutic approaches in humans. However, to assess the extent of side effects for such a therapeutic bypass, the substrate specificity and ganglioside (GG) turnover has to be defined in detail. This work presents the development of an HILIC based LC MS2 method as well as mass spectrometry imaging (MSI) using DESI (QqQ)MS2 and MALDI TOF to monitor GG pattern changes in mouse brains. The HILIC MS2 analysis of mouse brain tissue with neuraminidase 3 or 4 deficiency in the background of TSD as well as combined knockouts of GG synthesis enzymes revealed an overlapping but distinct substrate processing for the neuraminidases Neu3 and Neu4. MSI of the same tissue samples displayed similar patterns in spatial neural GM2 accumulation that suggest rather a broad distribution of these sialidases in mouse brain. Proposed neuroinflammation and demyelination in mouse brains of TSD led to a modulated HILIC MS2 method with which hexosylceramide isomer separation of GG precursor β-glucosylceramide (β-GlcCer) and prominent myelin sheath component β-galactosylceramide (β-GalCer) was achieved. Decreased levels of β-GalCer as a marker for demyelination in brains of TSD combined with neuraminidase deficiency could not be observed at the age of 6 month. Furthermore, proof of concept study and screening of various WT mouse tissues revealed the adaptability of this method. Even α-anomeric HexCers could be separated from mammalian β-anomers. In contrast to the mentioned β-HexCers, invariant natural killer T cells are activated most effectively when recognizing galactosylceramide with an α-glycosidic linkage appearing on the cell surface receptor CD1d of antigen presenting cells. One natural bacterial source of this compound in contact with our body is Bacteroides fragilis, a bacterial member of the human gut microbiome. This work highlights the detection and separation of α-GalCer(d17:0;h17:0) in B.fragilis and three other bacteria of the human gut microbiome β-HexCers. Very recent preliminary studies indicate the identification of an α-glycosidic GalCer in the mouse microbiome with the proposed structure of BdS α-GalCer(d18:0;h16:0)

    Single-Cell Lipidomics Using Analytical Flow LC-MS Characterizes the Response to Chemotherapy in Cultured Pancreatic Cancer Cells

    Get PDF
    In this work, we demonstrate the development and first application of nanocapillary sampling followed by analytical flow liquid chromatography–mass spectrometry for single-cell lipidomics. Around 260 lipids were tentatively identified in a single cell, demonstrating remarkable sensitivity. Human pancreatic ductal adenocarcinoma cells (PANC-1) treated with the chemotherapeutic drug gemcitabine can be distinguished from controls solely on the basis of their single-cell lipid profiles. Notably, the relative abundance of LPC(0:0/16:0) was significantly affected in gemcitabine-treated cells, in agreement with previous work in bulk. This work serves as a proof of concept that live cells can be sampled selectively and then characterized using automated and widely available analytical workflows, providing biologically relevant outputs

    Deletion of Specific Sphingolipids in Distinct Neurons Improves Spatial Memory in a Mouse Model of Alzheimer’s Disease

    Get PDF
    Alzheimer’s disease (AD) is characterized by progressive neurodegeneration and a concomitant loss of synapses and cognitive abilities. Recently, we have proposed that an alteration of neuronal membrane lipid microdomains increases neuronal resistance toward amyloid-β stress in cultured neurons and protects from neurodegeneration in a mouse model of AD. Lipid microdomains are highly enriched in a specific subclass of glycosphingolipids, termed gangliosides. The enzyme glucosylceramide synthase (GCS) catalyzes the rate-limiting step in the biosynthesis of these gangliosides. The present work now demonstrates that genetic GCS deletion in subsets of adult forebrain neurons significantly improves the spatial memory and counteracts the loss of dendritic spines in the hippocampal dentate gyrus of 5x familial AD mice (5xFAD//Ugcgf/f//Thy1-CreERT2//EYFP mice), when compared to 5xFAD//Ugcgf/f littermates (5xFAD mice). Aberrantly activated glial cells and their expression of pro-inflammatory cytokines have emerged as the major culprits for synaptic loss in AD. Typically, astrocytic activation is accompanied by a thickening of astrocytic processes, which impairs astrocytic support for neuronal synapses. In contrast to 5xFAD mice, 5xFAD//Ugcgf/f//Thy1-CreERT2//EYFP display a less pronounced thickening of astrocytic processes and a lower expression of tumor necrosis factor-α and interleukin 1-α in the hippocampus. Thus, this work further emphasizes that GCS inhibition may constitute a potential therapeutic target against AD

    Nanocapillary sampling coupled to liquid chromatography mass spectrometry delivers single cell drug measurement and lipid fingerprints

    Get PDF
    This work describes the development of a new approach to measure drug levels and lipid fingerprints in single living mammalian cells. Nanocapillary sampling is an approach that enables the selection and isolation of single living cells under microscope observation. Here, live single cell nanocapillary sampling is coupled to liquid chromatography for the first time. This allows molecular species to be separated prior to ionisation and improves measurement precision of drug analytes. The efficiency of transferring analytes from the sampling capillary into a vial was optimised in this work. The analysis was carried out using standard flow liquid chromatography coupled to widely available mass spectrometry instrumentation, highlighting opportunities for widespread adoption. The method was applied to 30 living cells, revealing cell-to-cell heterogeneity in the uptake of different antibiotics. Using this system, we detected 14-158 lipid features per single cell, revealing the association between bedaquiline uptake and lipid fingerprints

    Multimodal imaging of metals in a retinal degeneration model to inform on ocular disease

    Get PDF
    The metallome has been involved in the pathological investigation into ocular tissue for decades; however, as technologies advance, more information can be ascertained from individual tissue sections that were not previously possible. Herein, a demonstration of complementary techniques has been utilized to describe the distribution and concentrations of essential metals in both wildtype (WT) and rhodopsin (Rho−/−) ocular tissues. The multimodal approach described is an example of complementary datasets that can be produced when employing a multifaceted analytical approach. Heterogenous distributions of copper and zinc were observable within both WT and Rho−/− tissue by laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), and the distributions of further trace elements notoriously problematic for ICP-MS analysis (phosphorous, Sulfur, chlorine, potassium, calcium, iron, and aluminum) were analysed by particle-induced X-ray emission (PIXE)

    Fatty acid composition and metabolic partitioning of α-linolenic acid are contingent on life stage in human CD3+ T lymphocytes

    Get PDF
    IntroductionImmune function changes across the life course; the fetal immune system is characterised by tolerance while that of seniors is less able to respond effectively to antigens and is more pro-inflammatory than in younger adults. Lipids are involved centrally in immune function but there is limited information about how T cell lipid metabolism changes during the life course.Methods and ResultsWe investigated whether life stage alters fatty acid composition, lipid droplet content and α-linolenic acid (18:3ω-3) metabolism in human fetal CD3+ T lymphocytes and in CD3+ T lymphocytes from adults (median 41 years) and seniors (median 70 years). Quiescent fetal T cells had higher saturated (SFA), monounsaturated fatty acid (MUFA), and ω-6 polyunsaturated fatty acid (PUFA) contents than adults or seniors. Activation-induced changes in fatty acid composition differed between life stages. The principal metabolic fates of [13C]18:3ω-3 were constitutive hydroxyoctadecatrienoic acid synthesis and β-oxidation and carbon recycling into SFA and MUFA. These processes declined progressively across the life course. Longer chain ω-3 PUFA synthesis was a relatively minor metabolic fate of 18:3ω-3 at all life stages. Fetal and adult T lymphocytes had similar lipid droplet contents, which were lower than in T cells from seniors. Variation in the lipid droplet content of adult T cells accounted for 62% of the variation in mitogen-induced CD69 expression, but there was no significant relationship in fetal cells or lymphocytes from seniors.DiscussionTogether these findings show that fatty acid metabolism in human T lymphocytes changes across the life course in a manner that may facilitate the adaptation of immune function to different life stages

    A study of apiin from the parsley seeds and plant

    No full text

    An experimental investigation of the recirculation zone of laminar flames stabilized on bluff bodies at low Reynolds numbers

    Get PDF
    NOTE: Text or symbols not renderable in plain ASCII are indicated by [...]. Abstract is included in .pdf document. As part of a program to explain the shift in the maximum blowoff velocity from stoichiometric mixture ratio for small flame holder sizes, laminar flame stabilization studies were made using cylindrical flame holders of 0.031 to 0.125 inches in diameter at Reynolds numbers in the range of 10[^3] to 10[^4]. Chemical samples of the gases in the recirculation region behind the flame holders were taken and analyzed to determine the composition of the burning gases at the flame front. Maximum temperature measurements were taken of this same region. It was found that at these low Reynolds numbers, the composition was different than in the unburned approach mixtures, and that this was apparently due to the difference in molecular diffusion of the fuel and air across the flame front. The variation in the composition of the burning gases appears to be a direct function of the approach fuel-air mixture ratio for each diameter and approach mixture velocity
    corecore