8 research outputs found

    Induced seismicity during the construction of the Gotthard Base Tunnel, Switzerland: hypocenter locations and source dimensions

    Get PDF
    A series of 112 earthquakes was recorded between October 2005 and August 2007 during the excavation of the MFS Faido, the southernmost access point of the new Gotthard Base Tunnel. Earthquakes were recorded at a dense network of 11 stations, including 2 stations in the tunnel. Local magnitudes computed from Wood-Anderson-filtered horizontal component seismograms ranged from −1.0 to 2.4; the largest earthquake was strongly felt at the surface and caused considerable damage in the tunnel. Hypocenter locations obtained routinely using a regional 3-D P-wave velocity model and a constant Vp/Vs ratio 1.71 were about 2km below the tunnel. The use of seismic velocities calibrated from a shot in the tunnel revealed that routinely obtained hypocenter locations were systematically biased to greater depth and are now relocated to be on the tunnel level. Relocation of the shot using these calibrated velocities yields a location accuracy of 25m in longitude, 70m in latitude, and 250m in focal depth. Double-difference relative relocations of two clusters with highly similar waveforms showed a NW-SE striking trend that is consistent with the strike of mapped faults in the MFS Faido. Source dimensions computed using the quasidynamic model of Madariaga (Bull Seismo Soc Am 66(3):639-666, 1976) range from 50 to 170m. Overlapping source dimensions for earthquakes within the two main clusters suggests that the same fault patch was ruptured repeatedly. The observed seismicity was likely caused by stress redistribution due to the excavation work in the MFS Faid

    ”Quantarctica": new standalone GIS package for Antarctic research, operation and education using open-source software

    Get PDF
    第4回極域科学シンポジウム横断セッション:[IP] 極域における多圏融合物理現象11月13日(水)国立極地研究所 3階 ラウン

    Decadal changes from a multi-temporal glacier inventory of Svalbard

    Get PDF
    We present a multi-temporal digital inventory of Svalbard glaciers with the most recent from the late 2000s containing 33 775 km2 of glaciers covering 57% of the total land area of the archipelago. At present, 68% of the glacierized area of Svalbard drains through tidewater glaciers that have a total terminus width of ~ 740 km. The glacierized area over the entire archipelago has decreased by an average of 80 km2 a-1 over the past ~ 30 yr, representing a reduction of 7%. For a sample of ~ 400 glaciers (10 000 km2) in the south and west of Spitsbergen, three digital inventories are available from the 1930/60s, 1990 and 2007 from which we calculate average changes during 2 epochs. In the more recent epoch, the terminus retreat was larger than in the earlier epoch, while area shrinkage was smaller. The contrasting pattern may be explained by the decreased lateral wastage of the glacier tongues. Retreat rates for individual glaciers show a mix of accelerating and decelerating trends, reflecting the large spatial variability of glacier types and climatic/dynamic response times in Svalbard. Lastly, retreat rates estimated by dividing glacier area changes by the tongue width are larger than centerline retreat due to a more encompassing frontal change estimate with inclusion of lateral area loss

    Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands

    Get PDF
    Quantarctica (https://www.npolar.no/quantarctica) is a geospatial data package, analysis environment, and visualization platform for the Antarctic Continent, Southern Ocean (>40oS), and sub-Antarctic islands. Quantarctica works with the free, cross-platform Geographical Information System (GIS) software QGIS and can run without an Internet connection, making it a viable tool for fieldwork in remote areas. The data package includes basemaps, satellite imagery, terrain models, and scientific data in nine disciplines, including physical and biological sciences, environmental management, and social science. To provide a clear and responsive user experience, cartography and rendering settings are carefully prepared using colour sets that work well for typical data combinations and with consideration of users with common colour vision deficiencies. Metadata included in each dataset provides brief abstracts for non-specialists and references to the original data sources. Thus, Quantarctica provides an integrated environment to view and analyse multiple Antarctic datasets together conveniently and with a low entry barrier

    Quantarctica, an integrated mapping environment for Antarctica, the Southern Ocean, and sub-Antarctic islands

    Get PDF
    Quantarctica (https://www.npolar.no/quantarctica) is a geospatial data package, analysis environment, and visualization platform for the Antarctic Continent, Southern Ocean (>40oS), and sub-Antarctic islands. Quantarctica works with the free, cross-platform Geographical Information System (GIS) software QGIS and can run without an Internet connection, making it a viable tool for fieldwork in remote areas. The data package includes basemaps, satellite imagery, terrain models, and scientific data in nine disciplines, including physical and biological sciences, environmental management, and social science. To provide a clear and responsive user experience, cartography and rendering settings are carefully prepared using colour sets that work well for typical data combinations and with consideration of users with common colour vision deficiencies. Metadata included in each dataset provides brief abstracts for non-specialists and references to the original data sources. Thus, Quantarctica provides an integrated environment to view and analyse multiple Antarctic datasets together conveniently and with a low entry barrier
    corecore