151 research outputs found

    Mechanism of retinoic acid-induced transcription: histone code, DNA oxidation and formation of chromatin loops

    Get PDF
    Histone methylation changes and formation of chro- matin loops involving enhancers, promoters and 3′ end regions of genes have been variously associ- ated with active transcription in eukaryotes. We have studied the effect of activation of the retinoic A re- ceptor, at the RARE–promoter chromatin of CASP9 and CYP26A1 genes, 15 and 45 min following RA ex- posure, and we found that histone H3 lysines 4 and 9 are demethylated by the lysine-specific demethylase, LSD1 and by the JMJ-domain containing demethy- lase, D2A. The action of the oxidase (LSD1) and a dioxygenase (JMJD2A) in the presence of Fe++ elic- its an oxidation wave that locally modifies the DNA and recruits the enzymes involved in base and nu- cleotide excision repair (BER and NER). These events are essential for the formation of chromatin loop(s) that juxtapose the RARE element with the 5′ tran- scription start site and the 3′ end of the genes. The RARE bound-receptor governs the 5′ and 3′ end se- lection and directs the productive transcription cycle of RNA polymerase. These data mechanistically link chromatin loops, histone methylation changes and localized DNA repair with transcription

    Tracing and tracking epiallele families in complex DNA populations

    Get PDF
    DNA methylation is a stable epigenetic modification, extremely polymorphic and driven by stochastic and deterministic events. Most of the current techniques used to analyse methylated sequences identify methylated cytosines (mCpGs) at a single-nucleotide level and compute the average methylation of CpGs in the population of molecules. Stable epialleles, i.e. CpG strings with the same DNA sequence containing a discrete linear succession of phased methylated/non-methylated CpGs in the same DNA molecule, cannot be identified due to the heterogeneity of the 5′–3′ ends of the molecules. Moreover, these are diluted by random unstable methylated CpGs and escape detection. We present here MethCoresProfiler, an R-based tool that provides a simple method to extract and identify combinations of methylated phased CpGs shared by all components of epiallele families in complex DNA populations. The methylated cores are stable over time, evolve by acquiring or losing new methyl sites and, ultimately, display high information content and low stochasticity. We have validated this method by identifying and tracing rare epialleles and their families in synthetic or in vivo complex cell populations derived from mouse brain areas and cells during postnatal differentiation

    Reactive oxygen species derived from NOX3 and NOX5 drive differentiation of human oligodendrocytes

    Get PDF
    Reactive oxygen species (ROS) are signaling molecules that mediate stress response, apoptosis, DNA damage, gene expression and differentiation. We report here that differentiation of oligodendrocytes (OLs), the myelin forming cells in the CNS, is driven by ROS. To dissect the OL differentiation pathway, we used the cell line MO3-13, which display the molecular and cellular features of OL precursors. These cells exposed 1–4 days to low levels of H2O2 or to the protein kinase C (PKC) activator, phorbol-12-Myristate-13-Acetate (PMA) increased the expression of specific OL differentiation markers: the specific nuclear factor Olig-2, and Myelin Basic Protein (MBP), which was processed and accumulated selectively in membranes. The induction of differentiation genes was associated with the activation of ERK1-2 and phosphorylation of the nuclear cAMP responsive element binding protein 1 (CREB). PKC mediates ROS-induced differentiation because PKC depletion or bis-indolyl-maleimide (BIM), a PKC inhibitor, reversed the induction of differentiation markers by H2O2. H2O2 and PMA increased the expression of membrane-bound NADPH oxidases, NOX3 and NOX5. Selective depletion of these proteins inhibited differentiation induced by PMA. Furthermore, NOX5 silencing down regulated NOX3 mRNA levels, suggesting that ROS produced by NOX5 up-regulate NOX3 expression. These data unravel an elaborate network of ROS-generating enzymes (NOX5 to NOX3) activated by PKC and necessary for differentiation of OLs. Furthermore, NOX3 and NOX5, as inducers of OL differentiation, represent novel targets for therapies of demyelinating diseases, including multiple sclerosis, associated with impairment of OL differentiation

    A Common Mechanism Underlying the E1A Repression and the cAMP Stimulation of the H Ferritin Transcription

    Get PDF
    Transcription of the H ferritin gene in vivo is stimulated by cAMP and repressed by the E1A oncoprotein. We report here the identification of the cis-element in the human promoter responsive to both cAMP- and E1A-mediated signals. This promoter region is included between positions -62 to -45 and binds a approximate 120-kDa transcription factor called Bbf. Bbf forms a complex in vivo with the coactivator molecules p300 and CBP. Recombinant E1A protein reduces the formation of these complexes. In vivo overexpression of p300 in HeLa cells reverses the E1A-mediated inhibition of the ferritin promoter transcription driven by Bbf. These data suggest the existence of a common mechanism for the cAMP activation and the E1A-mediated repression of H ferritin transcription

    High-coverage methylation data of a gene model before and after DNA damage and homologous repair

    Get PDF
    Genome-wide methylation analysis is limited by its low coverage and the inability to detect single variants below 10%. Quantitative analysis provides accurate information on the extent of methylation of single CpG dinucleotide, but it does not measure the actual polymorphism of the methylation profiles of single molecules. To understand the polymorphism of DNA methylation and to decode the methylation signatures before and after DNA damage and repair, we have deep sequenced in bisulfite-treated DNA a reporter gene undergoing site-specific DNA damage and homologous repair. In this paper, we provide information on the data generation, the rationale for the experiments and the type of assays used, such as cytofluorimetry and immunoblot data derived during a previous work published in Scientific Reports, describing the methylation and expression changes of a model gene (GFP) before and after formation of a double-strand break and repair by homologous-recombination or non-homologous-end-joining. These data provide: 1) a reference for the analysis of methylation polymorphism at selected loci in complex cell populations; 2) a platform and the tools to compare transcription and methylation profiles

    Chromatin and DNA methylation dynamics during retinoic acid-induced RET gene transcriptional activation in neuroblastoma cells.

    Get PDF
    Although it is well known that RET gene is strongly activated by retinoic acid (RA) in neuroblastoma cells, the mechanisms underlying such activation are still poorly understood. Here we show that a complex series of molecular events, that include modifications of both chromatin and DNA methylation state, accompany RA-mediated RET activation. Our results indicate that the primary epigenetic determinants of RA-induced RET activation differ between enhancer and promoter regions. At promoter region, the main mark of RET activation was the increase of H3K4me3 levels while no significant changes of the methylation state of H3K27 and H3K9 were observed. At RET enhancer region a bipartite chromatin domain was detected in unstimulated cells and a prompt demethylation of H3K27me3 marked RET gene activation upon RA exposure. Moreover, ChIP experiments demonstrated that EZH2 and MeCP2 repressor complexes were associated to the heavily methylated enhancer region in the absence of RA while both complexes were displaced during RA stimulation. Finally, our data show that a demethylation of a specific CpG site at the enhancer region could favor the displacement of MeCP2 from the heavily methylated RET enhancer region providing a novel potential mechanism for transcriptional regulation of methylated RA-regulated loci

    ATM inhibition blocks glucose metabolism and amplifies the sensitivity of resistant lung cancer cell lines to oncogene driver inhibitors

    Get PDF
    Background: ATM is a multifunctional serine/threonine kinase that in addition to its well-established role in DNA repair mechanisms is involved in a number of signaling pathways including regulation of oxidative stress response and metabolic diversion of glucose through the pentose phosphate pathway. Oncogene-driven tumorigenesis often implies the metabolic switch from oxidative phosphorylation to glycolysis which provides metabolic intermediates to sustain cell proliferation. The aim of our study is to elucidate the role of ATM in the regulation of glucose metabolism in oncogene-driven cancer cells and to test whether ATM may be a suitable target for anticancer therapy. Methods: Two oncogene-driven NSCLC cell lines, namely H1975 and H1993 cells, were treated with ATM inhibitor, KU55933, alone or in combination with oncogene driver inhibitors, WZ4002 or crizotinib. Key glycolytic enzymes, mitochondrial complex subunits (OXPHOS), cyclin D1, and apoptotic markers were analyzed by Western blotting. Drug-induced toxicity was assessed by MTS assay using stand-alone or combined treatment with KU55933 and driver inhibitors. Glucose consumption, pyruvate, citrate, and succinate levels were also analyzed in response to KU55933 treatment. Both cell lines were transfected with ATM-targeted siRNA or non-targeting siRNA and then exposed to treatment with driver inhibitors. Results: ATM inhibition deregulates and inhibits glucose metabolism by reducing HKII, p-PKM2Tyr105, p-PKM2Ser37, E1α subunit of pyruvate dehydrogenase complex, and all subunits of mitochondrial complexes except ATP synthase. Accordingly, glucose uptake and pyruvate concentrations were reduced in response to ATM inhibition, whereas citrate and succinate levels were increased in both cell lines indicating the supply of alternative metabolic substrates. Silencing of ATM resulted in similar changes in glycolytic cascade and OXPHOS levels. Furthermore, the driver inhibitors amplified the effects of ATM downregulation on glucose metabolism, and the combined treatment with ATM inhibitors enhanced the cytotoxic effect of driver inhibitors alone by increasing the apoptotic response. Conclusions: Inhibition of ATM reduced both glycolytic enzymes and OXPHOS levels in oncogene-driven cancer cells and enhanced apoptosis induced by driver inhibitors thus highlighting the possibility to use ATM and the driver inhibitors in combined regimens of anticancer therapy in vivo

    Epigenetic Switch at Atp2a2 and Myh7 Gene Promoters in Pressure Overload-Induced Heart Failure

    Get PDF
    Re-induction of fetal genes and/or re-expression of postnatal genes represent hallmarks of pathological cardiac remodeling, and are considered important in the progression of the normal heart towards heart failure (HF). Whether epigenetic modifications are involved in these processes is currently under investigation. Here we hypothesized that histone chromatin modifications may underlie changes in the gene expression program during pressure overload-induced HF. We evaluated chromatin marks at the promoter regions of the sarcoplasmic reticulum Ca2+ATPase (SERCA-2A) and β-myosin-heavy chain (β-MHC) genes (Atp2a2 and Myh7, respectively) in murine hearts after one or eight weeks of pressure overload induced by transverse aortic constriction (TAC). As expected, all TAC hearts displayed a significant reduction in SERCA-2A and a significant induction of β-MHC mRNA levels. Interestingly, opposite histone H3 modifications were identified in the promoter regions of these genes after TAC, including H3 dimethylation (me2) at lysine (K) 4 (H3K4me2) and K9 (H3K9me2), H3 trimethylation (me3) at K27 (H3K27me3) and dimethylation (me2) at K36 (H3K36me2). Consistently, a significant reduction of lysine-specific demethylase KDM2A could be found after eight weeks of TAC at the Atp2a2 promoter. Moreover, opposite changes in the recruitment of DNA methylation machinery components (DNA methyltransferases DNMT1 and DNMT3b, and methyl CpG binding protein 2 MeCp2) were found at the Atp2a2 or Myh7 promoters after TAC. Taken together, these results suggest that epigenetic modifications may underlie gene expression reprogramming in the adult murine heart under conditions of pressure overload, and might be involved in the progression of the normal heart towards HF
    • …
    corecore