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Abstract 

Background  ATM is a multifunctional serine/threonine kinase that in addition to its well-established role in DNA 
repair mechanisms is involved in a number of signaling pathways including regulation of oxidative stress response 
and metabolic diversion of glucose through the pentose phosphate pathway. Oncogene-driven tumorigenesis often 
implies the metabolic switch from oxidative phosphorylation to glycolysis which provides metabolic intermediates 
to sustain cell proliferation. The aim of our study is to elucidate the role of ATM in the regulation of glucose metabo-
lism in oncogene-driven cancer cells and to test whether ATM may be a suitable target for anticancer therapy.

Methods  Two oncogene-driven NSCLC cell lines, namely H1975 and H1993 cells, were treated with ATM inhibitor, 
KU55933, alone or in combination with oncogene driver inhibitors, WZ4002 or crizotinib. Key glycolytic enzymes, 
mitochondrial complex subunits (OXPHOS), cyclin D1, and apoptotic markers were analyzed by Western blotting. 
Drug-induced toxicity was assessed by MTS assay using stand-alone or combined treatment with KU55933 and driver 
inhibitors. Glucose consumption, pyruvate, citrate, and succinate levels were also analyzed in response to KU55933 
treatment. Both cell lines were transfected with ATM-targeted siRNA or non-targeting siRNA and then exposed 
to treatment with driver inhibitors.

Results  ATM inhibition deregulates and inhibits glucose metabolism by reducing HKII, p-PKM2Tyr105, p-PKM2Ser37, 
E1α subunit of pyruvate dehydrogenase complex, and all subunits of mitochondrial complexes except ATP synthase. 
Accordingly, glucose uptake and pyruvate concentrations were reduced in response to ATM inhibition, whereas 
citrate and succinate levels were increased in both cell lines indicating the supply of alternative metabolic substrates. 
Silencing of ATM resulted in similar changes in glycolytic cascade and OXPHOS levels. Furthermore, the driver inhibi-
tors amplified the effects of ATM downregulation on glucose metabolism, and the combined treatment with ATM 
inhibitors enhanced the cytotoxic effect of driver inhibitors alone by increasing the apoptotic response.

Conclusions  Inhibition of ATM reduced both glycolytic enzymes and OXPHOS levels in oncogene-driven cancer 
cells and enhanced apoptosis induced by driver inhibitors thus highlighting the possibility to use ATM and the driver 
inhibitors in combined regimens of anticancer therapy in vivo.
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Introduction
Ataxia-telangiectasia mutated protein (ATM) is a mul-
tifunctional serine/threonine kinase involved in several 
signaling pathways including DNA damage response, 
cell cycle progression, and apoptosis by interacting with 
a network of substrates such as Mre11-Rad50-Nbs1 
(MRN) complex, Chk2, and p53 [1–3]. ATM protein 
is mainly present as an inactive dimer in the nucleus 
where in the presence of DNA double-strand breaks, it 
is activated by autophosphorylation at serine 1981 and 
binds to substrates as a monomer. ATM can be acti-
vated even in the absence of detectable DNA damage 
in a MRN-independent manner in response to high lev-
els of reactive oxygen species (ROS) [4, 5]. In this case, 
phosphorylated ATM is active in the form of a disulfide-
linked dimer with an extranuclear localization, mainly 
found in the cytoplasm of neuronal cells [6] and mito-
chondria of myocardiocytes [7].

In addition to its role as a redox sensor, ATM was 
reported to be involved in glucose metabolism since it 
affects glucose uptake by regulating GLUT1 transport 
activity on cell membrane and GLUT4 translocation 
[8, 9]. Treatment with ATM inhibitor KU55933 abol-
ished indeed insulin-dependent transport of glucose and 
caused a significant decrease of AKT phosphorylation 
indicating that inhibition of ATM significantly impairs 
insulin-mediated GLUT4 translocation. Furthermore, 
ATM is responsible for the metabolic diversion of glu-
cose from glycolysis to the pentose phosphate pathway 
(PPP) since it modulates the enzymatic activity of glu-
cose-6-phosphate dehydrogenase (G6PDH), the rate-lim-
iting enzyme of the oxidative branch of PPP, showing an 
enhanced activity in several tumors [10]. Notably, glucose 
catabolism through the PPP increases the production of 
NADPH, a reducing agent, and ribose-5-phosphate, one 
of the building blocks of nucleic acid synthesis, thus pro-
viding essential elements for cellular redox homeostasis 
and DNA repair [11, 12].

An altered glucose metabolism is a phenotypic trait 
of most cancer cells that, despite the presence of oxy-
gen, can generate energy through the glycolytic pathway 
rather than using oxidative phosphorylation and tri-
carboxylic acid cycle (TCA) [13, 14]. Oncogene-driven 
tumorigenesis often implies the reprogramming of glu-
cose metabolism and the acquisition of a glycolytic phe-
notype that confers a growth advantage to cancer cells 
since a high rate of glycolysis provides a large amount of 
metabolic intermediates that can be used for other bio-
synthetic pathways such as PPP to obtain nucleotides or 
synthesis of amino acids and fatty acids [15–21]. In pre-
vious studies, we showed that inhibition of oncogene 
drivers by targeted agents caused a metabolic shift from 
aerobic glycolysis to oxidative phosphorylation through 

the concerted downregulation of hexokinase II (HKII) 
and pyruvate kinase M2 phosphorylated at Tyr105 
(p-PKM2Tyr105) and upregulation of OXPHOS [22–24]. It 
is presently unknown whether ATM has a specific role in 
the acquisition or maintenance of the glycolytic pheno-
type in cancer cells and more importantly whether there 
are intersections between the oncogene-driven mitogenic 
pathways and ATM signaling.

The aim of the present study is to elucidate the role 
of ATM in the regulation of glucose metabolism in can-
cer cells and to test whether ATM is a suitable target 
for anticancer therapy. Previous studies showed indeed 
that FLT3-driven acute myeloid leukemia (AML) cells 
exposed to FLT3 inhibitors together with the inhibition 
of the ATM/G6PDH axis showed a higher response to 
therapy [25]. Furthermore, the combination of ATM 
inhibitor (KU55933) and EGFR tyrosine kinase inhibi-
tor (gefitinib) showed a synergistic effect in blocking cell 
growth and enhancing apoptosis [26]. Based on these 
observations, we selected two oncogene-driven non-
small cell lung cancer (NSCLC) cell lines that are resist-
ant to EGFR inhibitors and tested whether treatment 
with ATM inhibitor may enhance sensitivity to EGFR 
inhibitors in those cells investigating the underlying 
molecular mechanisms.

Materials and methods
Cell lines and treatment
Two NSCLC cell lines were obtained from and authenti-
cated by the American Type Culture Collection. In par-
ticular, H1993 cells are expressing high level of MET due 
to gene amplification (15 copy numbers) and wild-type 
EGFR and H1975 cells are  bearing an activating point 
mutation in exon 21 (L858R) of the kinase domain of 
EGFR along with T790M secondary mutation which con-
fers resistance to first generation EGFR inhibitors. H1993 
and H1975 cells were grown in RPMI culture medium 
(Gibco, Thermo Fisher ATCC modification A1049101 
and Gibco, Thermo Fisher, 21875091) supplemented with 
10% fetal bovine serum, 100 IU/mL penicillin, and 50 µg/
mL streptomycin in a humidified incubator with 5% CO2 
at 37 °C.

Cells were treated with different targeted agents such 
as double mutant EGFRL858R/T790M inhibitor WZ4002 
(0.5 or 1  µM, Selleck Chemicals), MET inhibitor crizo-
tinib (0.5 or 1 µM, Selleck Chemicals), and ATM inhibi-
tor KU55933 (10 and 100 nM, Sigma-Aldrich) or vehicle 
for 48 h at 37 °C. Drug-induced toxicity was assessed by 
MTS assay (Sigma-Aldrich). Briefly, H1975 cells were 
plated at a density of 5000/well in 96-well plates and 
then treated for 48  h with increasing concentrations of 
KU55933 or WZ4002 (0.01–5 μM) alone and with fixed 
doses of KU55933 (10 nM and 100 nM) in combination 
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with WZ4002 (0.01–5  μM). Parallel experiments were 
also performed in H1993 cells treated with 0.5- and 
1-μM crizotinib alone or in combination with 100-nM 
KU55933, and results were compared to cells exposed 
to 100-nM KU55933 alone or to untreated controls. 
The optical density (OD) was measured at 450 nm using 
microplate spectrophotometer, after 1-h incubation with 
MTS at 37  °C. At least three independent assays were 
performed, and data are expressed as percentage of viable 
cells, considering the untreated control cells as 100%.

siRNA interference
H1993 and H1975 cells were transfected with siRNA 
targeting ATM (sense CUU​AGC​AGG​AGG​UGU​AAA​
U, antisense AUU​UAC​ACC​UCC​UGC​UAA​G) and con-
trol non-targeting siRNA (siCTRL) purchased from 
Sigma-Aldrich and used according to the manufacturer’s 
instructions. Briefly, H1993 and H1975 cells were plated 
and allowed to attach for 24  h. Then, cells were trans-
fected with 100-nM siRNAs using the DharmaFECT 
reagent (Dharmacon), and after 24  h, EGFR or MET 
inhibitors were added for further 48 h. Finally, cells were 
harvested and lysed for subsequent Western blot analysis.

Immunoblotting analysis
Untreated and treated cells were lysed on ice in RIPA 
lysis buffer (Sigma-Aldrich) with protease (Sigma-
Aldrich) and phosphatase inhibitors (Sigma-Aldrich) and 
kept on ice for 30 min. The suspension was homogenized 
and centrifuged at 13,000 g at 4 °C for 30 min, and then 
supernatant containing whole cell lysates was collected.

Western blot analysis was performed by using a stand-
ard procedure. Antibodies used for Western blotting 
included the following: actin (A4700, Sigma-Aldrich), 
p-ATMS1981 (ab81292 Abcam), ATM (ab199726, Abcam), 
BIM (559685, BD Biosciences), cyclin D1 (2922, Cell 
Signaling Technology), α-tubulin (T9026, Sigma-
Aldrich), GAPDH (5174S Cell Signaling Technology), 
glucose-6-phosphate dehydrogenase (sc-373886 Santa 
Cruz Biotechnology), hexokinase II (2867, Cell Signal-
ing Technology), lamin A/C (2032, Cell Signaling Tech-
nology), LDH-A (3582, Cell Signaling Technology), 
p-p53Ser15 (9284S, Cell Signaling Technology), p53 (sc-
126, Santa Cruz Biotechnology), p-PDHSer293 (ab92696, 
Abcam), PDH (3205, Cell Signaling Technology), PARP 
(556494, BD Pharmingen), p-PKM2Tyr105 (3827, Cell 
Signaling Technology), p-PKM2Ser37 (11456, Signalway 
Antibody), PKM2 (4053, Cell Signaling Technology), vin-
culin (4650, Cell Signaling Technology), and a cocktail of 
5 mAbs against OXPHOS (ab110411, Abcam) recognized 
the following proteins: 20 kD subunit of Complex I (20 
kD), COX II of Complex IV (22 kD), 30 kD Ip subunit of 
Complex II (30 kD), core 2 of Complex III (~ 50 kD), and 

F1α (ATP synthase) of Complex V (~ 60 kD). A commer-
cially available ECL kit (Advansta, San Jose, CA, USA) 
was used to reveal the reaction.

Glucose consumption, pyruvate, citrate, and succinate 
levels in cultured tumor cells
Glucose levels were determined in conditioned media 
of H1993 and H1975 cells that were treated or not with 
KU55933. Briefly, conditioned media were removed, cen-
trifuged at 13,000 g at 4 °C for 10 min, and then assayed 
for glucose concentrations using the Glucose Assay Kit 
(Sigma-Aldrich), following manufacturer’s instructions. 
Moreover, intracellular citrate, pyruvate, and succinate 
levels were determined in H1993 and H1975 cells using 
the Citrate Assay Kit (Sigma-Aldrich), Pyruvate Assay 
Kit (Sigma-Aldrich), and Succinate Assay Kit (Sigma-
Aldrich) following manufacturers’ instructions. Briefly, 
cells were seeded in six-well flat-bottomed plates at 
a density of 3 × 105 cells per well and then treated with 
ATM inhibitor (100-nM)  for 48  h. Cells were collected 
and resuspended in specific substrate assay buffer and 
incubated with appropriate assay mix. The optical density 
(OD) was measured using microplate spectrophotom-
eter, and metabolite concentrations were calculated from 
the corresponding standard curve and normalized to 106 
cells. At least three independent experiments were per-
formed, and data were pooled.

Glycolytic and mitochondrial ATP production
The production of ATP by glycolysis and mitochondria 
was determined using the Seahorse XFp Analyzer (Agi-
lent Technologies, Santa Clara, CA, USA) and the real-
time ATP rate assay kit (Agilent technologies) following 
manufacturer’s instructions. Briefly, H1975 and H1993 
cells were seeded on cell culture miniplates and allowed 
to attach overnight. Cells were then treated with 10-nM 
and 100-nM KU55933, 1-μM WZ4002, or 1-μM crizo-
tinib and combined therapy with 100-nM KU55933 plus 
0.5-μM WZ4002 or crizotinib for 48 h. ATP production 
was measured after the subsequent addition of 1.5-μM 
oligomycin and 0.5-μM rotenone + antimycin A. Data 
were collected from untreated and treated cells using 
at least 7 independent measurements for each condi-
tion. Data were normalized for 106 cells and expressed 
as percentage of glycolytic and mitochondrial ATP 
contribution.

Statistical analysis
Statistical analysis was performed using the software 
MedCalc for Windows, version 12.7.0.0, (MedCalc Soft-
ware, Mariakerke, Belgium). The unpaired Student’s 
t-test was used when appropriate for comparing means. 
ANOVA for repeated measures followed by pairwise 
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comparisons was used to assess differences among mul-
tiple treatment groups. A value of p < 0.05 was considered 
statistically significant.

Results
Modulation of glycolysis and oxidative phosphorylation 
in response to ATM inhibitor
Resistant H1993 and H1975 NSCLC cells were prelimi-
narily characterized for the expression of ATM (Fig. 1A) 
and then exposed to 10 and 100  nM of KU55933, an 
ATM-specific inhibitor for 48  h. Whole cell lysates 
were prepared and subjected to Western blot analysis 
to evaluate levels of glycolytic enzymes and mitochon-
drial complexes in untreated and treated cells. Fig-
ure 1B shows a dose-dependent reduction of p-ATM in 
both treated cell lines as compared to untreated con-
trols. Furthermore, ATM inhibition caused a reduction 

of HKII, p-PKM2Tyr105, p-PKM2Ser37, and E1α subunit 
of pyruvate dehydrogenase complex phosphorylated 
at Ser293 (p-PDHSer293), and these effects were more 
pronounced in H1975 cells compared to H1993 cells 
(Fig.  1C). ATM inhibition also caused a strong reduc-
tion of mitochondrial subunits. In particular, all com-
plexes except ATP synthase (ATP5A) were reduced in 
H1975 cells, whereas H1993 cells showed a reduction 
of Complex I (NADH dehydrogenase), Complex II (suc-
cinate dehydrogenase), and Complex IV (cytochrome C 
oxidase) (Fig. 1D).

These findings indicate that inhibition of ATM phos-
phorylation strongly affects glucose metabolism by 
downregulating both glycolytic enzymes and OXPHOS. 
As expected, levels of glucose-6-phosphate dehydroge-
nase (G6PDH) were reduced in both cell lines exposed 
to ATM inhibitor (Figure S1).

Fig. 1  Effects of ATM inhibition on glycolysis and OXPHOS in oncogene-driven NSCLC H1993 and H1975 cells. A Baseline levels of ATM protein 
in both cell lines. B Inhibition of ATM phosphorylation after 48-h exposure to 10-nM and 100-nM of KU55933. C Levels of HKII, phospho-PKM2Tyr105, 
phospho-PKM2Ser37, PKM2, LDH-A, phospho-PDHSer293, and PDH in basal conditions and after 48-h exposure to 10-nM and 100-nM of KU55933. 
D Levels of OXPHOS in basal conditions and after 48-h exposure to 10-nM and 100-nM of KU55933. Vinculin, GAPDH, and tubulin serve as equal 
loading controls
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Effects of ATM inhibition on intermediates of glucose 
metabolism
To test the effects of ATM inhibition on glucose uptake 
and its metabolic intermediates, we tested the extracel-
lular glucose concentration and intracellular pyruvate, 
citrate, and succinate levels in H1993 and H1975 cells 
exposed or not to KU55933 for 48  h. Extracellular glu-
cose levels significantly increased after treatment with 
ATM inhibitor in both cell lines indicating a reduction 
of glucose consumption in treated cells compared to 
untreated controls (Fig. 2A). This effect was more promi-
nent in H1975 cells as compared to H1993 cells. Levels 
of intracellular pyruvate decreased in both cell lines after 
therapy with KU55933 reaching statistical significance 
only in H1975 cells (Fig. 2B). Citrate levels were signifi-
cantly increased after therapy in H1993 cells, whereas 
they were only slightly increased in H1975 cells (Fig. 2C). 
Furthermore, succinate concentrations were significantly 
increased in both cell lines, more markedly in H1993 
cells (Fig. 2 D).

These findings along with results of Fig. 1 indicate that 
inhibition of ATM by downregulating glycolytic enzymes 
reduces the consumption of glucose from the medium 
and consequently decreases pyruvate levels. On the other 

hand, inhibition of ATM downregulates also mitochon-
drial complexes, and hence, energy metabolism is greatly 
impaired in both cell lines. In the absence of an abundant 
energy source, it is likely that replenishment of tricarbo-
xylic acid cycle (TCA) intermediates such as citrate and 
succinate can be provided by additional metabolic sub-
strates from other biosynthetic pathways such as glu-
tamine, amino acids, or fatty acids.

Silencing of ATM protein by small interfering RNA
To test the effects of downregulation of ATM, both cell 
lines were transfected with non-targeting (siCTRL) and 
ATM-targeted siRNA (siATM). As shown in Fig.  3A, a 
strong decrease of ATM was observed in both cell lines 
transfected with ATM-targeted siRNA. Downregulation 
of ATM caused a reduction of HKII and p-PKM2Tyr105 in 
both cell lines as well as a slight decrease of mitochondrial 
Complex IV and III in H1975 cells (Fig. 3A and B). When 
exposed to selective driver inhibition, ATM-silenced cells 
showed a decrease of HKII, p-PKM2Tyr105, and p-PDH-
Ser293 that was higher than in siCTRL cells exposed to the 
same agent. Furthermore, a stronger reduction of cyclin 
D1 and a higher upregulation of BIM were observed in 
both ATM-silenced cell lines as compared to siCTRL 

Fig. 2  Levels of extracellular glucose and intracellular metabolic intermediates in response to ATM inhibition. A Levels of residual glucose in culture 
media of H1993 and H1975 cells exposed to 10-nM and 100-nM of KU55933 for 48 h. Levels of intracellular B pyruvate, C citrate, and D succinate 
in H1993 and H1975 cells exposed to 100-nM of KU55933 for 48 h. Symbol * indicates a p-value < 0.05, symbol ** indicates a p-value < 0.01, symbol 
*** indicates a p-value < 0.001 versus NT
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cells exposed to crizotinib or WZ4002. Interestingly, 
the same potentiation effect between ATM silencing 
and driver inhibition was observed when testing levels 
of OXPHOS in treated cells. In fact, the simultaneous 
downregulation of ATM and driver inhibition caused a 
reduction of levels of Complexes II, III, IV, and V as com-
pared to those found in cells exposed to each treatment 
alone (Fig. 3B).

Effects of combined treatment with ATM and driver inhibitors 
in H1975 and H1993 cells
H1975 cells were treated with KU55933 (10-nM and 100-
nM) and WZ4002 (0.5 μM and 1 μM) alone or in com-
bination for 48  h. Expression levels of p-ATM, ATM, 
p-EGFR, PGC-1 α, p-p53Ser15, p53, PARP and cleaved 
PARP, BIM, lamin A/C, and cyclin D1 were evaluated 
by Western blot analysis (Fig. 4A). Notably, p-ATM lev-
els along with PGC-1α expression were increased by the 
exposure to WZ4002, whereas p-EGFR, p-p53, and cyc-
lin D1 showed a reduction after the same treatment. As 
expected, treatment with WZ4002 alone caused a strong 
upregulation of BIM and a slight increase of cleaved 
PARP and cleaved-lamin A/C. Treatment with KU55933 
alone caused a dramatic reduction of p-ATM along with 
a slight decrease of cyclin D1 only at the highest dose. 

Furthermore, levels of p-p53Ser15, p53, and BIM remained 
unchanged, whereas level of p-EGFR increased, and 
cleaved PARP showed a minimal increase. Combined 
treatment with KU55933 and WZ4002 showed a cumu-
lative dose-dependent decrease of p-p53Ser15 that was 
more pronounced as compared to those obtained with 
single agent alone. Notably, combination of low doses 
of KU55933 (10-nM) with WZ4002 showed a strong 
upregulation of BIM, increased levels of cleaved PARP 
and cleaved-lamin A/C, and a reduction of cyclin D1 that 
were higher than those obtained with single agent alone. 
Similar results were obtained with combination of high 
doses of KU55933 (100-nM) with WZ4002, although at 
the highest doses of KU55933 and WZ4002 the potentia-
tion effect was less evident for levels of BIM and cyclin 
D1. Then, H1975 cells were treated for 48 h with increas-
ing concentrations of KU55933 or WZ4002 (0.01–5 μM) 
alone and with fixed doses of KU55933 (10-nM and 100-
nM) in combination with WZ4002 (0.01–5 μM) and were 
subject to cell viability assay (Fig. 4B).

In agreement with previous findings, treatment 
with increasing concentrations of KU55933 alone 
did not cause any significant change in cell viability, 
whereas WZ4002 alone decreased cell viability show-
ing an IC50 > 1 μM. Combined treatment with KU55933 

Fig. 3  Effects of ATM silencing in oncogene-driven H1993 and H1975 cells. A Levels of HKII, phospho-PKM2Tyr105, PKM2, phospho-PDHSer293, PDH, 
cyclin D1, and BIM in H1993 and H1975 cells transfected with ATM-targeted small interfering RNA or siRNA control and exposed to crizotinib 
or WZ4002 for 48 h. B Levels of OXPHOS in H1993 and H1975 cells transfected with ATM-targeted small interfering RNA or siRNA control 
and exposed to crizotinib or WZ4002 for 48 h. GAPDH and actin serve as equal loading controls
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(10-nM) and WZ4002 caused a stronger reduction of 
cell viability as compared to that obtained with WZ4002 
alone showing an IC50 of approximately 0.5  μM. In 
particular, 0.01 and 0.1 μM of WZ4002 in combination 
with 10-nM KU55933 showed a statistically significant 
reduction of cell viability (p < 0.005) as compared to 
treatment with WZ4002 alone. The addition of higher 
doses of KU55933 (100-nM) to the same concentra-
tion of WZ4002 did not show a further potentiation of 
WZ4002 effects. These findings indicate that KU55933 
at very low doses is able to enhance the effects of EGFR 
TKIs in oncogene driven H1975 cells and can be used 
in combined treatment regimens without causing toxic 
effects.

In parallel experiments, H1993 cells were treated with 
KU55933 (10-nM and 100-nM) and crizotinib (0.5  μM 
and 1 μM) alone or in combination for 48 h. In Fig. 5A, 
the combined treatment caused a strong reduction of 
cyclin D1 along with a dramatic upregulation of BIM 
and cleaved PARP indicating a potentiation effect on 
both proliferation and apoptosis as compared to single-
agent treatment. Accordingly, the addition of KU55933 

(100-nM) to crizotinib at 0.5 or 1 μM caused a significant 
decrease of cell viability as compared to treatment with 
crizotinib alone (Fig. 5B).

Glycolytic and mitochondrial ATP production
In order to test the effects of different treatments on ATP 
production, the percentages of glycolytic and mitochon-
drial ATP levels were determined in H1975 and H1993 
cells exposed to treatment with KU55933 alone or in 
combination with oncogene inhibitor, and results are 
shown in Fig.  6. A statistically significant reduction of 
mitochondrial ATP production (p < 0.01) was observed in 
H1975 cells treated with 1-μM WZ4002 or a combination 
of 0.5-μM WZ4002 and 100-nM KU55933 as compared 
to untreated cells (Fig. 6A). The same treatments caused 
a concomitant significant increase of glycolytic ATP pro-
duction (p < 0.01) in H1975 cells. Notably, the addition of 
KU55933 to half-dose of W4002 in the combination regi-
men caused a further reduction of mitochondrial ATP 
production as compared to W4002 alone, although such 
difference did not achieve statistical significance. Simi-
larly, a statistically significant reduction of mitochondrial 

Fig. 4  Combined treatment with KU55933 and WZ4002 in H1975 cells. A Levels of p-ATM, ATM, p-EGFR, PGC-1α, p-p53, p53, PARP and cleaved 
PARP, BIM, cleaved-lamin A/C, and cyclin D1 in H1975 treated with KU55933 (10-nM and 100-nM), WZ4002 (0.5 μM and 1 μM), and their combination 
for 48 h. B Cell viability assay performed in H1975 cells exposed to increasing concentration of KU55933 (0.01–5 μM) or WZ4002 (0.01–5 μM) alone 
and to combination treatment with a fixed concentration of KU55933 (10-nM and 100-nM) plus increasing doses of WZ4002 (0.01–5 μM). Tubulin 
serves as equal loading control
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Fig. 5  Combined treatment with KU55933 and crizotinib in H993 cells. A Levels of p-ATM, ATM, PGC-1α, p-p53.Ser15, p53, PARP and cleaved PARP, 
BIM, and cyclin D1 in H1993 treated with KU55933 (10- nM and 100-nM), crizotinib (0.5 μM and 1 μM), and their combination for 48 h. B Cell viability 
assay performed in H1993 cells exposed to KU55933 (100-nM), crizotinib (0.5 μM–1 μM), and their combination. Tubulin serves as equal loading 
control. Symbol * indicates a p-value < 0.05. Symbol *** indicates a p-value < 0.001

Fig. 6  Percentages of glycolytic and mitochondrial ATP production in untreated and treated H1975 and H1993 cells. A H1975 cells were treated 
for 48 h with 10-nM and 100-nM KU55933, 1-μM WZ4002, and a combination of 100-nM KU55933 with 0.5-μM WZ4002. B H1993 cells were treated 
for 48 h with 10-nM and 100-nM KU55933, 1-μM crizotinib, and a combination of 100-nM KU55933 with 0.5-μM crizotinib. Compared to untreated 
cells, the symbol ** indicates p < 0.01, whereas *** indicates p < 0.001
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ATP production (p < 0.001) and a significant increase of 
glycolytic ATP levels (p < 0.001) were observed in H1993 
cells treated with 1-μM crizotinib or a combination of 
0.5-μM crizotinib and 100-nM KU55933 as compared to 
untreated control (Fig. 6B).

Discussion
Our study showed that exposure of NSCLC cells to low 
doses of ATM inhibitor induces a combined downregu-
lation of glycolytic enzymes and OXPHOS with a sig-
nificant reduction of glucose consumption and energy 
supply. Despite the decrease of glucose-dependent 
energy production, NSCLC cells exposed to ATM inhibi-
tor do not activate the apoptotic program and survived 
as shown by MTS assay suggesting the exploitation of 
alternative energetic substrates. Nevertheless, the com-
bined treatment of NSCLC cells with ATM and driver 
inhibitors strongly enhanced the cytotoxic effects of 
oncogene driver targeted agent. This potentiation effect 
of ATM inhibitor relies upon an enhanced activation of 
the apoptotic program as revealed by increased levels of 
BIM, cleaved-PARP, or cleaved-lamin A/C in response to 
combined treatment. Similar findings were obtained by 
silencing ATM using siRNA and treating NSCLC cells 
with oncogene driver inhibitors.

In previous studies, we showed that inhibition of 
oncogene drivers such as EGFR in NSCLC and BCR-
ABL in CML caused a downregulation of glycolysis 
and an upregulation of OXPHOS [22, 23]. In the pre-
sent article, when oncogene driver inhibitors were 
used in NSCLC cells silenced for ATM, we observed 
downregulation of OXPHOS indicating that ATM lev-
els and its phosphorylation status are key factors for 
OXPHOS regulation. In other words, p-ATM inte-
grates regulatory signals converging on mitochondria 
from different pathways determining the mitochon-
drial status and energy metabolism. In agreement with 
our observations, cells from subjects with ataxia-telan-
giectasia and knockout of ATM in mice and cells show 
mitochondrial dysfunction [27]. In particular, lack of 
ATM causes alterations in total mitochondrial DNA 
levels and mitochondrial mass and reduction of mito-
chondrial respiration rates [28–30]. Transcriptional 
activation of mitochondrial genes by nuclear respira-
tory factor 1 (NRF1) is reduced in ATM-deficient cells 
resulting in a decreased mitochondrial biogenesis [31]. 
An indirect regulation of mitochondrial homeostasis 
by ATM is reported to occur through histone H2AX, 
one of the primary targets of ATM following double-
stranded DNA breaks. Loss of H2AX led to decrease 
of PGC-1α protein, a transcription coactivator that 

regulate the expression of OXPHOS, and consequently 
to reduced levels of subunits of the five OXPHOS 
complexes in both mouse embryonic fibroblasts and 
the brains of mutant mice [32]. Here, we showed that, 
independently from double-stranded DNA breaks, 
treatment with WZ4002 increases levels of p-ATM in 
H1975 cells and enhances the expression of PGC-1α, 
whereas the addition of even low doses of KU55933 
prevents the upregulation of PGC-1α in response to 
TK inhibitors.

Furthermore, we showed that direct inhibition of 
ATM phosphorylation is able to reduce OXPHOS 
levels in oncogene-driven cancer cells and to 
enhance apoptosis in response to TK inhibitors, 
thus highlighting the possibility to use ATM inhibi-
tors in combination therapy. However, in order to 
exploit this ability of ATM inhibitors in clinical stud-
ies, highly selective agents targeting only the nonca-
nonical function of ATM are required to avoid the 
impairment of the canonical DNA repair function of 
ATM. Further studies are needed to identify targets 
downstream ATM that can be safely exploited for 
therapeutic purposes.

In conclusion, our study highlights the role of ATM 
in the maintenance of glycolytic phenotype despite 
functional mitochondria in oncogene-driven can-
cer cells since phosphorylated ATM is needed for the 
expression of glycolytic enzyme and OXPHOS. The 
lack of ATM or reduction of its phosphorylated form 
shift the glucose-dependent energy metabolism to 
other substrates and cause reduction of OXPHOS and 
mitochondrial dysfunction, thus rendering cancer cells 
more sensitive to oncogene driver inhibitors and apop-
totic stimuli.
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