10 research outputs found
Correction:How the COVID-19 pandemic highlights the necessity of animal research (vol 30, pg R1014, 2020)
(Current Biology 30, R1014–R1018; September 21, 2020) As a result of an author oversight in the originally published version of this article, a number of errors were introduced in the author list and affiliations. First, the middle initials were omitted from the names of several authors. Second, the surname of Dr. van Dam was mistakenly written as “Dam.” Third, the first name of author Bernhard Englitz was misspelled as “Bernard” and the surname of author B.J.A. Pollux was misspelled as “Pullox.” Finally, Dr. Keijer's first name was abbreviated rather than written in full. These errors, as well as various errors in the author affiliations, have now been corrected online
Applicability of Dickson Charge Pump in Energy Harvesting Systems: Experimental Validation of Energy Harvesting Charge Pump Model
Energy harvesting methods provide very low instantaneous power. Accordingly, available voltage levels are low and must be increased so that an energy harvesting method can be used as a power supply. One approach uses charge pumps to boost low AC voltage from energy harvester to a higher DC voltage. Characterized by very low output current and a wide span of operating frequencies, energy harvesting methods introduce a number of limitations to charge pump operation. This paper describes and models behavior of Dickson charge pump in energy harvesting applications. Proposed Energy Harvesting model is evaluated and compared with Standard and Tanzawa charge pump models and with measurement results. Based on the proposed model, the conditions that need to be satisfied so that a charge pump can reach maximum power point of energy harvesting system are defined. Parameter selection method optimized for maximum power point is presented and is experimentally validated
Transcriptional profiling and biomarker identification reveal tissue specific effects of expanded ataxin-3 in a spinocerebellar ataxia type 3 mouse model
Abstract Background Spinocerebellar ataxia type 3 (SCA3) is a progressive neurodegenerative disorder caused by expansion of the polyglutamine repeat in the ataxin-3 protein. Expression of mutant ataxin-3 is known to result in transcriptional dysregulation, which can contribute to the cellular toxicity and neurodegeneration. Since the exact causative mechanisms underlying this process have not been fully elucidated, gene expression analyses in brains of transgenic SCA3 mouse models may provide useful insights. Methods Here we characterised the MJD84.2 SCA3 mouse model expressing the mutant human ataxin-3 gene using a multi-omics approach on brain and blood. Gene expression changes in brainstem, cerebellum, striatum and cortex were used to study pathological changes in brain, while blood gene expression and metabolites/lipids levels were examined as potential biomarkers for disease. Results Despite normal motor performance at 17.5 months of age, transcriptional changes in brain tissue of the SCA3 mice were observed. Most transcriptional changes occurred in brainstem and striatum, whilst cerebellum and cortex were only modestly affected. The most significantly altered genes in SCA3 mouse brain were Tmc3, Zfp488, Car2, and Chdh. Based on the transcriptional changes, α-adrenergic and CREB pathways were most consistently altered for combined analysis of the four brain regions. When examining individual brain regions, axon guidance and synaptic transmission pathways were most strongly altered in striatum, whilst brainstem presented with strongest alterations in the pi-3 k cascade and cholesterol biosynthesis pathways. Similar to other neurodegenerative diseases, reduced levels of tryptophan and increased levels of ceramides, di- and triglycerides were observed in SCA3 mouse blood. Conclusions The observed transcriptional changes in SCA3 mouse brain reveal parallels with previous reported neuropathology in patients, but also shows brain region specific effects as well as involvement of adrenergic signalling and CREB pathway changes in SCA3. Importantly, the transcriptional changes occur prior to onset of motor- and coordination deficits
How the COVID-19 pandemic highlights the necessity of animal research
Recently, a petition was offered to the European Commission calling for an immediate ban on animal testing. Although a Europe-wide moratorium on the use of animals in science is not yet possible, there has been a push by the non-scientific community and politicians for a rapid transition to animal-free innovations. Although there are benefits for both animal welfare and researchers, advances on alternative methods have not progressed enough to be able to replace animal research in the foreseeable future. This trend has led first and foremost to a substantial increase in the administrative burden and hurdles required to make timely advances in research and treatments for human and animal diseases. The current COVID-19 pandemic clearly highlights how much we actually rely on animal research. COVID-19 affects several organs and systems, and the various animal-free alternatives currently available do not come close to this complexity. In this Essay, we therefore argue that the use of animals is essential for the advancement of human and veterinary health. In this Essay, Genzel et al. make the case for animal research in light of the COVID-19 pandemic
How the COVID-19 pandemic highlights the necessity of animal research
Recently, a petition was offered to the European Commission calling for an immediate ban on animal testing. Although a Europe-wide moratorium on the use of animals in science is not yet possible, there has been a push by the non-scientific community and politicians for a rapid transition to animal-free innovations. Although there are benefits for both animal welfare and researchers, advances on alternative methods have not progressed enough to be able to replace animal research in the foreseeable future. This trend has led first and foremost to a substantial increase in the administrative burden and hurdles required to make timely advances in research and treatments for human and animal diseases. The current COVID-19 pandemic clearly highlights how much we actually rely on animal research. COVID-19 affects several organs and systems, and the various animal-free alternatives currently available do not come close to this complexity. In this Essay, we therefore argue that the use of animals is essential for the advancement of human and veterinary health
Correction: How the COVID-19 pandemic highlights the necessity of animal research
(Current Biology 30, R1014–R1018; September 21, 2020
How the COVID-19 pandemic highlights the necessity of animal research
Contains fulltext :
225123.pdf (publisher's version ) (Closed access)Recently, a petition was offered to the European Commission calling for an immediate ban on animal testing. Although a Europe-wide moratorium on the use of animals in science is not yet possible, there has been a push by the non-scientific community and politicians for a rapid transition to animal-free innovations. Although there are benefits for both animal welfare and researchers, advances on alternative methods have not progressed enough to be able to replace animal research in the foreseeable future. This trend has led first and foremost to a substantial increase in the administrative burden and hurdles required to make timely advances in research and treatments for human and animal diseases. The current COVID-19 pandemic clearly highlights how much we actually rely on animal research. COVID-19 affects several organs and systems, and the various animal-free alternatives currently available do not come close to this complexity. In this Essay, we therefore argue that the use of animals is essential for the advancement of human and veterinary health