5,166 research outputs found

    APOM-project: a pilot study of pharmacy organization and management

    Get PDF
    Recently, in a joint cooperation of Stichting VNA, SAL Apotheken, the Faculty of Management and Organization, and the University Centre for Pharmacy, University of Groningen in the Netherlands, a Ph.D-study started regarding Apot(he)ek, Organization and Management (APOM). The APOM-project deals with the structuring and steering of pharmacy organization. The manageability of the internal pharmacy organization, and the manageability of the direct environment of pharmacy organization is the subject matter. The theoretical background of the APOM-project is described. A literature study was made to find mixes of objectives. Three mixes of objectives in pharmacy organization are postulated; the product mix, the process mix, and the customer mix. The typology will be used as a basic starting point for the empirical study in the next phase of the APOM-project.

    APOM-project : a study of pharmacy practice

    Get PDF
    In 1994, a Ph.D-study started regarding pharmacy, organization and management (APOM) in the Netherlands. The APOM-project deals with the structuring and steering of pharmacy organization. This article describes the summary of the empirical results of a survey in a relatively large sample (n=169). Generalization to the population of pharmacies in the Netherlands was made. The results for thought, the perceived importance of activities, comprised a total number of seven clusters of priorities of pharmacy mixes. Most pharmacy managers perceived the product (pharmaceutical) activities and the customer activities as the most important. The results for action, the actual performance of activities, comprised a total number of five clusters of activities of pharmacy mixes. Most pharmacy managers performed the product activities and the process (financial-economic) activities most frequently. The results showed that the traditional conception of the work in the community pharmacy is still vividly present.

    APOM-project: an investigation of pharmacy organization and management

    Get PDF
    Recently, in a joint cooperation of Stichting VNA, SAL Apotheken, the Faculty of Management and Organization, and the University Centre for Pharmacy, University of Groningen in the Netherlands, a Ph.D-study started regarding Apot(he)ek, Organization and Management (APOM). The APOM-project deals with the structuring and steering of pharmacy organization. The manageability of the internal pharmacy organization, and the manageability of the direct environment of pharmacy organization is the subject matter. The theoretical background of the APOM-project is described. A literature study was made to find mixes of objectives. Three mixes of objectives in pharmacy organization are postulated; the product mix, the process mix, and the customer mix. The typology will be used as a basic starting point for the empirical study in the next phase of the APOM-project.

    Neutral carbon and CO in 76 (U)LIRGs and starburst galaxy centers A method to determine molecular gas properties in luminous galaxies

    Get PDF
    We present fluxes in both neutral carbon [CI] lines at the centers of 76 galaxies with FIR luminosities between 10^{9} and 10^{12} L(o) obtained with Herschel-SPIRE and with ground-based facilities, along with the J=7-6, J=4-3, J=2-1 12CO and J=2-1 13CO line fluxes. We investigate whether these lines can be used to characterize the molecular ISM of the parent galaxies in simple ways and how the molecular gas properties define the model results. In most starburst galaxies, the [CI]/13CO flux ratio is much higher than in Galactic star-forming regions, and it is correlated to the total FIR luminosity. The [CI](1-0)/CO(4-3), the [CI](2-1) (2-1)/CO(7-6), and the [CI] (2-1)/(1-0) flux ratios are also correlated, and trace the excitation of the molecular gas. In the most luminous infrared galaxies (LIRGs), the ISM is fully dominated by dense and moderately warm gas clouds that appear to have low [C]/[CO] and [13CO]/[12CO] abundances. In less luminous galaxies, emission from gas clouds at lower densities becomes progressively more important, and a multiple-phase analysis is required to determine consistent physical characteristics. Neither the CO nor the [CI] velocity-integrated line fluxes are good predictors of H2 column densities in individual galaxies, and X(CI) conversion factors are not superior to X(CO) factors. The methods and diagnostic diagrams outlined in this paper also provide a new and relatively straightforward means of deriving the physical characteristics of molecular gas in high-redshift galaxies up to z=5, which are otherwise hard to determine

    The excitation of near-infrared H2 emission in NGC 253

    Full text link
    Because of its large angular size and proximity to the Milky Way, NGC 253, an archetypal starburst galaxy, provides an excellent laboratory to study the intricacies of this intense episode of star formation. We aim to characterize the excitation mechanisms driving the emission in NGC 253. Specifically we aim to distinguish between shock excitation and UV excitation as the dominant driving mechanism, using Br\gamma, H_2 and [FeII] as diagnostic emission line tracers. Using SINFONI observations, we create linemaps of Br\gamma, [FeII]_{1.64}, and all detected H_2 transitions. By using symmetry arguments of the gas and stellar gas velocity field, we find a kinematic center in agreement with previous determinations. The ratio of the 2-1 S(1) to 1-0 S(1) H_2 transitions can be used as a diagnostic to discriminate between shock and fluorescent excitation. Using the 1-0 S(1)/2-1 S(1) line ratio as well as several other H_2 line ratios and the morphological comparison between H_2 and Br\gamma and [FeII], we find that excitation from UV photons is the dominant excitation mechanisms throughout NGC 253. We employ a diagnostic energy level diagram to quantitatively differentiate between mechanisms. We compare the observed energy level diagrams to PDR and shock models and find that in most regions and over the galaxy as a whole, fluorescent excitation is the dominant mechanism exciting the H_2 gas. We also place an upper limit of the percentage of shock excited H_2 at 29%. We find that UV radiation is the dominant excitation mechanism for the H_2 emission. The H_2 emission does not correlate well with Br\gamma but closely traces the PAH emission, showing that not only is H_2 fluorescently excited, but it is predominately excited by slightly lower mass stars than O stars which excite Br\gamma, such as B stars

    2DV modelling of sediment transport processes over full-scale ripples in regular asymmetric oscillatory flow

    Get PDF
    Wave-induced, steep vortex ripples are ubiquitous features in shallow coastal seas and it is therefore important to fully understand and model the sediment transport processes that occur over them. To this end, two two-dimensional vertical (2DV) models have been critically tested against detailed velocity and sediment concentration measurements above mobile ripples in regular asymmetric oscillatory flow. The two models are a k–ω turbulence-closure model and a discrete-vortex, particle-tracking (DVPT) model, while the data are obtained in the Aberdeen oscillatory flow tunnel (AOFT). The models and the data demonstrate that the time-dependent velocity and suspended sediment concentration above the ripple are dominated by the generation of lee-side vortices and their subsequent ejection at flow reversal. The DVPT model predicts the positions and strengths of the vortices reasonably well, but tends to overpredict the velocity close to the ripple surface. The k–ω model, on the other hand, underpredicts the height to which the vortices are lifted, but is better able to predict the velocity close to the bed. In terms of the cycle- and ripple-averaged horizontal velocity, both models are able to reproduce the observed offshore flow close to and below the ripple crest and the DVPT model is able to produce the onshore flow higher up. In the vicinity of the vortices, the DVPT model better represents the concentration (because of its better prediction of vorticity). The k–ω model, on the other hand, better represents the concentration close to the ripple surface and higher up in the flow (because of the better representation of the near-bed flow and background turbulence). The measured and predicted cycle- and ripple-averaged suspended sediment concentrations are in reasonable agreement and demonstrate the expected region of exponential decay. The models are able to reproduce the observed offshore cycle- and ripple-averaged suspended sediment flux from the ripple troughs upwards, and as a result, produce net offshore suspended sediment transport rates that are in reasonable agreement. The net measured offshore suspended transport rate, based on the integration of fluxes, was found to be consistent with the total net offshore transport measured in the tunnel as a whole once the onshore transport resulting from ripple migration was taken into account, as would be expected. This demonstrates the importance of models being able to predict ripple-migration rates. However, at present neither of the models is able to do so

    Probing the Interstellar Medium using HI absorption and emission towards the W3 HII region

    Full text link
    HI spectra towards the W3 HII complex are presented and used to probe the Galactic structure and interstellar medium conditions between us and this region. The overall shape of the spectra is consistent with the predictions of the Two-Arm Spiral Shock model wherein the gas found in the -40 km/s to -50 km/s range has been accelerated by some 20 km/s from its rotation curve velocity. Spin temperatures of ~100 K are derived for the Local Arm gas, lower than found in a previous, similar study towards DR 7. For the interarm region, values on the order of 300 K are found, implying a negligible filling factor for the Cold Neutral Medium (<< 1%). Some of the absorbing gas at velocities near -40 km/s is confirmed to be associated with the HII regions.Comment: 23 pages, 6 figures, accepted for publication in the Astronomical Journa

    Magnetic fields at the periphery of UCHII regions from carbon recombination line observations

    Get PDF
    Several indirect evidences indicate a magnetic origin for the non-thermal width of spectral lines observed toward molecular clouds. In this letter, I suggest that the origin of the non-thermal width of carbon recombination lines (CRLs) observed from photo-dissociation regions (PDRs) near ultra-compact \HII\ regions is magnetic and that the magnitude of the line width is an estimate of the \alfven speed. The magnetic field strengths estimated based on this suggestion compare well with those measured toward molecular clouds with densities similar to PDR densities. I conclude that multi-frequency CRL observations have the potential to form a new tool to determine the field strength near star forming regions.Comment: To appear in ApJ Letter
    corecore