958 research outputs found

    Comparative analysis of Bacillus weihenstephanensis KBAB4 spores obtained at different temperatures

    Get PDF
    The impact of Bacillus weihenstephanensis KBAB4 sporulation temperature history was assessed on spore heat resistance, germination and outgrowth capacity at a temperature range from 7 to 30 °C. Sporulation rate and efficiency decreased at low temperature, as cells sporulated at 12, 20 and 30 °C with approximately 99% efficiency, whereas at 7 °C and 10 °C, a maximum 15% of sporulation was reached. Spores formed at 30 °C showed the highest wet heat resistance at 95 °C, with spores formed at 7 and 10 °C displaying only survival of 15 min exposure at 70 °C, indicating their low level heat resistance. RT-PCR analysis revealed expression of sporulation sigma factor sigG, and germinant receptor operons gerI, gerK, gerL, gerR, gerS, and (plasmid-located) gerS2 to be activated in all sporulation conditions tested. Subsequent germination assays revealed a combination of inosine and L-Alanine to be very efficient, triggering over 99% of the spores to germinate, with spores obtained at 30 °C showing the highest germination rates (99%). Notably, spores obtained at 12, 20 and 30 °C, germinated at all tested temperatures, showing > 70% spore germination even at temperatures as low as 5 °C. Less than 5% of spores obtained at 7 and 10 °C showed a germination response. Furthermore, spores produced at 12, 20 and 30 °C showed similar outgrowth effiency at these temperatures, indicating that low temperature sporulation history does not improve low temperature outgrowth performance. Insights obtained in sporulation and germination behaviour of B. weihenstephanensis KBAB4, in combination with the availability of its genome sequence, may contribute to our understanding of the behaviour of psychrotolerant spoilage and pathogenic Bacill

    Germinant receptor diversity and germination responses of four strains of the Bacillus cereus group

    Get PDF
    Four strains of the Bacillus cereus group were compared for their germinant receptor composition and spore germination capacity. Phylogenetic analysis of the germinant receptor encoding operons of the enterotoxic strains B. cereus ATCC 14579 and ATCC 10987, the emetic strain AH187, and the psychrotolerant strain Bacillus weihenstephanensis KBAB4, indicated a core group of five germinant receptor operons to be present in the four strains, with each strain containing one to three additional receptors. Using quantitative PCR, induction of expression during sporulation was confirmed for all identified germinant receptor operons in these strains. Despite the large overlap in receptors, diversity in amino acid-induced germination capacity was observed, with six out of 20 amino acids, serving as germinants for spores of all four strains. Each strain showed unique features: efficient germination of strain KBAB4 spores required non-inducing amounts of inosine as the co-germinant, strain ATCC 10987 spores germinated only efficiently after heat activation. Furthermore, strain ATCC 14579 and AH187 spores germinated without heat activation or inosine, with strain ATCC 14579 spores being triggered by all amino acids except phenylalanine and strain AH187 spores being specifically triggered efficiently only by phenylalanine. Analysis of all germination data did not reveal strict linkages between specific germinants and germinant receptors. Finally, the diversity in nutrient-induced germination capacity was also reflected in the diverse germination responses of heat-activated spores of the four B. cereus strains in food matrices, such as milk, rice water and meat bouillon, indicating that amino acid composition and/or availability of inosine are important germination determinants in foods. Keywords: Ger operon; Food preservation; B. weihenstephanensis; Sporulatio

    Detectie en determinanten van osteoporose in de eerste lijn

    Get PDF

    Surges and Si IV bursts in the solar atmosphere. Understanding IRIS and SST observations through RMHD experiments

    Full text link
    Surges often appear as a result of the emergence of magnetized plasma from the solar interior. Traditionally, they are observed in chromospheric lines such as Hα\alpha 6563 \AA and Ca II 8542 \AA. However, whether there is a response to the surge appearance and evolution in the Si IV lines or, in fact, in many other transition region lines has not been studied. In this paper we analyze a simultaneous episode of an Hα\alpha surge and a Si IV burst that occurred on 2016 September 03 in active region AR12585. To that end, we use coordinated observations from the Interface Region Imaging Spectrograph (IRIS) and the Swedish 1-m Solar Telescope (SST). For the first time, we report emission of Si IV within the surge, finding profiles that are brighter and broader than the average. Furthermore, the brightest Si IV patches within the domain of the surge are located mainly near its footpoints. To understand the relation between the surges and the emission in transition region lines like Si IV, we have carried out 2.5D radiative MHD (RMHD) experiments of magnetic flux emergence episodes using the Bifrost code and including the non-equilibrium ionization of silicon. Through spectral synthesis we explain several features of the observations. We show that the presence of Si IV emission patches within the surge, their location near the surge footpoints and various observed spectral features are a natural consequence of the emergence of magnetized plasma from the interior to the atmosphere and the ensuing reconnection processes.Comment: 13 pages, 8 figures. The Astrophysical Journal (Accepted

    Review of catalytic systems and thermodynamics for the Guerbet condensation reaction and challenges for biomass valorization

    Get PDF
    The Guerbet condensation reaction is an alcohol coupling reaction that has been known for more than a century. Because of the increasing availability of bio-based alcohol feedstock, this reaction is of growing importance and interest in terms of value chains of renewable chemical and biofuel production. Due to the specific branching pattern of the alcohol products, the Guerbet reaction has many interesting applications. In comparison to their linear isomers, branched-chain Guerbet alcohols have extremely low melting points and excellent fluidity. This review provides thermodynamic insights and unravels the various mechanistic steps involved. A comprehensive overview of the homogeneous, heterogeneous and combined homogeneous and heterogeneous catalytic systems described in published reports and patents is also given. Technological considerations, challenges and perspectives for the Guerbet chemistry are discussed

    The multi-thermal and multi-stranded nature of coronal rain

    Full text link
    In this work, we analyse coordinated observations spanning chromospheric, TR and coronal temperatures at very high resolution which reveal essential characteristics of thermally unstable plasmas. Coronal rain is found to be a highly multi-thermal phenomenon with a high degree of co-spatiality in the multi-wavelength emission. EUV darkening and quasi-periodic intensity variations are found to be strongly correlated to coronal rain showers. Progressive cooling of coronal rain is observed, leading to a height dependence of the emission. A fast-slow two-step catastrophic cooling progression is found, which may reflect the transition to optically thick plasma states. The intermittent and clumpy appearance of coronal rain at coronal heights becomes more continuous and persistent at chromospheric heights just before impact, mainly due to a funnel effect from the observed expansion of the magnetic field. Strong density inhomogeneities on spatial scales of 0.2"-0.5" are found, in which TR to chromospheric temperature transition occurs at the lowest detectable scales. The shape of the distribution of coronal rain widths is found to be independent of temperature with peaks close to the resolution limit of each telescope, ranging from 0.2" to 0.8". However we find a sharp increase of clump numbers at the coolest wavelengths and especially at higher resolution, suggesting that the bulk of the rain distribution remains undetected. Rain clumps appear organised in strands in both chromospheric and TR temperatures, suggesting an important role of thermal instability in the shaping of fundamental loop substructure. We further find structure reminiscent of the MHD thermal mode. Rain core densities are estimated to vary between 2x10^{10} cm^{-3} and 2.5x10^{11} cm^{-3} leading to significant downward mass fluxes per loop of 1-5x10^{9} g s^{-1}, suggesting a major role in the chromosphere-corona mass cycle.Comment: Abstract is only short version. See paper for full. Countless pages, figures (and movies, but not included here). Accepted for publication in the Astrophysical Journa
    • …
    corecore