3 research outputs found

    Modeling complement activation on human glomerular microvascular endothelial cells

    Get PDF
    Introduction: Atypical hemolytic uremic syndrome (aHUS) is a rare kidney disease caused by dysregulation of the complement alternative pathway. The complement dysregulation specifically leads to damage to the glomerular endothelium. To further understand aHUS pathophysiology, we validated an ex vivo model for measuring complement deposition on both control and patient human glomerular microvascular endothelial cells (GMVECs). Methods: Endothelial cells were incubated with human test sera and stained with an anti-C5b-9 antibody to visualize and quantify complement depositions on the cells with immunofluorescence microscopy.Results: First, we showed that zymosan-activated sera resulted in increased endothelial C5b-9 depositions compared to normal human serum (NHS). The levels of C5b-9 depositions were similar between conditionally immortalized (ci)GMVECs and primary control GMVECs. The protocol with ciGMVECs was further validated and we additionally generated ciGMVECs from an aHUS patient. The increased C5b-9 deposition on control ciGMVECs by zymosan-activated serum could be dose-dependently inhibited by adding the C5 inhibitor eculizumab. Next, sera from five aHUS patients were tested on control ciGMVECs. Sera from acute disease phases of all patients showed increased endothelial C5b-9 deposition levels compared to NHS. The remission samples showed normalized C5b-9 depositions, whether remission was reached with or without complement blockage by eculizumab. We also monitored the glomerular endothelial complement deposition of an aHUS patient with a hybrid complement factor H (CFH)/CFH-related 1 gene during follow-up. This patient had already chronic kidney failure and an ongoing deterioration of kidney function despite absence of markers indicating an aHUS flare. Increased C5b-9 depositions on ciGMVECs were observed in all samples obtained throughout different diseases phases, except for the samples with eculizumab levels above target. We then tested the samples on the patient’s own ciGMVECs. The C5b-9 deposition pattern was comparable and these aHUS patient ciGMVECs also responded similar to NHS as control ciGMVECs. Discussion: In conclusion, we demonstrate a robust and reliable model to adequately measure C5b-9-based complement deposition on human control and patient ciGMVECs. This model can be used to study the pathophysiological mechanisms of aHUS or other diseases associated with endothelial complement activation ex vivo.</p

    Sensitive, reliable and easy-performed laboratory monitoring of eculizumab therapy in atypical hemolytic uremic syndrome

    Get PDF
    Complement C5 inhibitor eculizumab treatment in atypical hemolytic uremic syndrome is effective, but associated with high costs. Complement inhibition monitoring in these patients has not been standardized. In this study we evaluated novel functional assays for application in routine follow-up. We documented that the Wieslab® complement screen assay showed a sensitivity of 1–2% of C5 activity by adding purified C5 or normal human serum to a C5 deficient serum. All the patient samples obtained during the treatment course, were completely blocked for terminal complement pathway activity for up to four weeks after the eculizumab infusion. Levels of complexes between eculizumab and C5 were inversely correlated to the complement activity (p = 0.01). Moreover, titrating serum from eculizumab-treated patients into normal serum revealed that eculizumab was present in excess up to four weeks after infusion. Thus, we demonstrate sensitive, reliable and easy-performed assays which can be used to design individual eculizumab dosage regimens

    Sensitive, reliable and easy-performed laboratory monitoring of eculizumab therapy in atypical hemolytic uremic syndrome

    No full text
    Complement C5 inhibitor eculizumab treatment in atypical hemolytic uremic syndrome is effective, but associated with high costs. Complement inhibition monitoring in these patients has not been standardized. In this study we evaluated novel functional assays for application in routine follow-up. We documented that the Wieslab® complement screen assay showed a sensitivity of 1–2% of C5 activity by adding purified C5 or normal human serum to a C5 deficient serum. All the patient samples obtained during the treatment course, were completely blocked for terminal complement pathway activity for up to four weeks after the eculizumab infusion. Levels of complexes between eculizumab and C5were inversely correlated to the complement activity (p=0.01).Moreover, titrating serumfromeculizumab-treated patients into normal serum revealed that eculizumab was present in excess up to four weeks after infusion. Thus, we demonstrate sensitive, reliable and easy-performed assays which can be used to design individual eculizumab dosage regimens
    corecore