50 research outputs found

    The pediatric acenocoumarol dosing algorithm:The Children Anticoagulation and Pharmacogenetics Study

    Get PDF
    Essentials: A pediatric pharmacogenetic dosing algorithm for acenocoumarol has not yet been developed. We conducted a multicenter retrospective follow-up study in children in the Netherlands. Body surface area and indication explained 45.0% of the variability in dose requirement. Adding the genotypes of VKORC1, CYP2C9 and CYP2C18 to the algorithm increased this to 61.8%. Summary: Background: The large variability in dose requirement of vitamin K antagonists is well known. For warfarin, pediatric dosing algorithms have been developed to predict the correct dose for a patient; however, this is not the case for acenocoumarol. Objectives: To develop dosing algorithms for pediatric patients receiving acenocoumarol with and without genetic information. Methods: The Children Anticoagulation and Pharmacogenetics Study was designed as a multicenter retrospective follow-up study in Dutch anticoagulation clinics and children's hospitals. Pediatric patients who used acenocoumarol between 1995 and 2014 were selected for inclusion. Clinical information and saliva samples for genotyping of the genes encoding cytochrome P450 (CYP) 2C9, vitamin K epoxide reductase complex subunit 1 (VKORC1), CYP4F2, CYP2C18 and CYP3A4 were collected. Linear regression was used to analyze their association with the log mean stable dose. A stable period was defined as three or more consecutive International Normalized Ratio measurements within the therapeutic range over a period of ≥ 3 weeks. Results: In total, 175 patients were included in the study, of whom 86 had a stable period and no missing clinical information (clinical cohort; median age 8.9 years, and 49% female). For 80 of these 86 patien

    Influence of pharmacogenetic variability on the pharmacokinetics and toxicity of the aurora kinase inhibitor danusertib

    Get PDF
    Objectives Danusertib is a serine/threonine kinase inhibitor of multiple kinases, including aurora-A, B, and C. This explorative study aims to identify possible relationships between single nucleotide polymorphisms in genes coding for drug metabolizing enzymes and transporter proteins and clearance of danusertib, to clarify the interpatient variability in exposure. In addition, this study explores the relationship between target receptor polymorphisms and toxicity of danusertib. Methods For associations with clearance, 48 cancer patients treated in a phase I study were analyzed for ABCB1, ABCG2 and FMO3 polymorphisms. Association analyses between neutropenia and drug target receptors, including KDR, RET, FLT3, FLT4, AURKB and AURKA, were performed in 30 patients treated at recommended phase II dose-levels in three danusertib phase I or phase II trials. Results No relationships between danusertib clearance and drug metabolizing enzymes and transporter protein polymorphisms were found. Only, for the one patient with FMO3 18281AA polymorphism, a significantly higher clearance was noticed, compared to patients carrying at least 1 wild type allele. No effect of target receptor genotypes or haplotypes on neutropenia was observed. Conclusions As we did not find any major correlations between pharmacogenetic variability in the studied enzymes and transporters and pharmacokinetics nor toxicity, it is unlikely that danusertib is highly susceptible for pharmacogenetic variation. Therefore, no dosing alterations of danusertib are expected in the future, based on the polymorphisms studied. However, the relationship between FMO3 polymorphisms and clearance of danusertib warrants further research, as we could study only a small group of patients

    Salmonella Gene rma (ramA) and Multiple-Drug-Resistant Salmonella enterica Serovar Typhimurium

    Get PDF
    MarA and its homologue, RamA, have been implicated in multidrug resistance (MDR). RamA overexpression in Salmonella enterica serovar Typhimurium and Escherichia coli conferred MDR independently of marA. Inactivation of ramA did not affect the antibiotic susceptibilities of wild-type S. enterica serovar Typhimurium or 15 unrelated clinical MDR isolates. Thus, ramA overexpression is not a common MDR mechanism in Salmonella

    Salmonella enterica Serovar Typhimurium RamA, Intracellular Oxidative Stress Response, and Bacterial Virulence

    No full text
    Escherichia coli and Salmonella enterica serovar Typhimurium have evolved genetic systems, such as the soxR/S and marA regulons, to detoxify reactive oxygen species, like superoxide, which are formed as by-products of metabolism. Superoxide also serves as a microbicidal effector mechanism of the host's phagocytes. Here, we investigate whether regulatory genes other than soxR/S and marA are active in response to oxidative stress in Salmonella and may function as virulence determinants. We identified a bacterial gene, which was designated ramA (342 bp) and mapped at 13.1 min on the Salmonella chromosome, that, when overexpressed on a plasmid in E. coli or Salmonella, confers a pleiotropic phenotype characterized by increased resistance to the redox-cycling agent menadione and to multiple unrelated antibiotics. The ramA gene is present in Salmonella serovars but is absent in E. coli. The gene product displays 37 to 52% homology to the transcriptional activators soxR/S and marA and 80 to 100% identity to a multidrug resistance gene in Klebsiella pneumoniae and Salmonella enterica serovar Paratyphi A. Although a ramA soxR/S double null mutant is highly susceptible to intracellular superoxide generated by menadione and displays decreased Mn-superoxide dismutase activity, intracellular survival of this mutant within macrophage-like RAW 264.7 cells and in vivo replication in the spleens in Ity(r) mice are not affected. We concluded that despite its role in the protective response of the bacteria to oxidative stress in vitro, the newly identified ramA gene, together with soxR/S, does not play a role in initial replication of Salmonella in the organs of mice

    Genome Wide Association Study for Predictors of Progression Free Survival in Patients on Capecitabine, Oxaliplatin, Bevacizumab and Cetuximab in First-Line Therapy of Metastatic Colorectal Cancer

    No full text
    Despite expanding options for systemic treatment, survival for metastatic colorectal cancer (mCRC) remains limited and individual response is difficult to predict. In search of pre-treatment predictors, pharmacogenetic research has mainly used a candidate gene approach. Genome wide association (GWA) studies offer the benefit of simultaneously analyzing a large number of SNPs, in both known and still unidentified functional regions. Using a GWA approach, we searched for genetic markers affecting progression free survival (PFS) in mCRC patients treated with first-line capecitabine, oxaliplatin and bevacizumab (CAPOX-B), with or without cetuximab. 755 patients were included in the CAIRO2-trial, a multicenter phase III trial, randomizing between first-line treatment with CAPOX-B versus CAPOX-B plus cetuximab. Germline DNA and complete clinical information was available from 553 patients and genome wide genotyping was performed, using Illumina's OmniExpress beadchip arrays, with 647,550 markers passing all quality checks. Another 2,202,473 markers were imputated by using HapMap2. Association with PFS was analysed using a Cox proportional hazards model. One marker, rs885036, associated significantly with PFS (P = 2.17x10(-8)) showing opposite effects on PFS depending on treatment arm. The minor allele was associated with increased PFS in patients receiving cetuximab. A cluster of markers located on chromosome 8 associated with PFS, irrespective of treatment arm (P-values of 2.30x10(-7) to 1.04x10(-6)). This is the first GWA study to find SNPs affecting PFS in mCRC patients treated with CAPOX-B, either with or without cetuximab. Rs885036 is a potential predictive marker for cetuximab efficacy. These markers need to be validated in independent treatment cohort

    Single-nucleotide polymorphisms in the genes of CES2, CDA and enzymatic activity of CDA for prediction of the efficacy of capecitabine-containing chemotherapy in patients with metastatic breast cancer

    No full text
    We examined whether genetic polymorphisms (SNPs) in the capecitabine activation pathway and CDA enzymatic activity were associated with prognosis, benefit from capecitabine-containing treatment or capecitabine-related toxicities. The study population comprised 188 metastatic breast cancer patients of the ATX trial (EudraCT 2006-006058-83) randomized for first-line paclitaxel and bevacizumab with (ATX) or without capecitabine (AT). Cumulative capecitabine dose until grade ≥2 hand-foot syndrome or until first dose reduction were toxicity endpoints. We genotyped CDA c.-451C. >. T (rs532545), CDA c.-33delC (rs3215400) and CES2 c.-806C. >. G (rs11075646). CDA activity in baseline serum was measured with a spectrophotometric assay and values were analyzed using a median cut-off or as continuous variable. CDA c.-33delC was prognostic for overall survival (OS) independent of hormone receptor status. For the predictive analysis, progression-free survival benefit from ATX over AT was observed in patients with a CDA c.-33del/del or del/insC genotype, a CDA c.-451CC or CT genotype, and a CES2 c.-806CC genotype compared with their counterparts. There was a higher response rate for ATX over AT in patients with a CDA c.-451CT or TT genotype. Patients with high CDA enzymatic activity had more benefit from capecitabine, while this was marginally observed in the CDA low group. Toxicity endpoints were not associated with any candidate markers. In conclusion, CDA c.-33delC was associated with OS. Since particular SNPs in CDA and CES2 were associated with benefit from the addition of capecitabine to AT, their predictive value should be explored in a higher number of patients
    corecore