35 research outputs found

    Determinants of above-ground carbon stocks and productivity in secondary forests along a 3000-m elevation gradient in the Ecuadorian Andes

    Get PDF
    Background: Secondary montane forests, covering 30% of forested lands in the Andes, play a crucial role in mitigating the impact of carbon release. However, the mechanisms responsible for carbon sequestration in the above-ground biomass of these forests are not well quantified. Aims: Understanding the determinants of above-ground carbon (AGC) dynamics in secondary forests along a 3000-m elevational gradient in the Andes to assess their mitigation potential. Methods: We assessed how abiotic and biotic conditions and past human disturbances were related to forest structure and composition, AGC stocks and productivity within sixteen 0.36-ha plots established in secondary forest stands of 30–35 years of age. Results: Structural equation models revealed that changes in temperature conditions along the elevation gradient shaped leaf functional composition, which in turn controlled AGC dynamics. Productivity and temperature decreased with increasing elevation and decreased tree community leaf area. Disturbance legacy (Tree mortality) increased with competitive thinning and low soil fertility. Conclusions: We show that temperature drives AGC dynamics by changing the functional trait composition. This highlights the importance of preserving these forests along elevation gradients and implies potentially strong future changes due to global warming.</p

    Recovery of dialysis patients with COVID-19 : health outcomes 3 months after diagnosis in ERACODA

    Get PDF
    Background. Coronavirus disease 2019 (COVID-19)-related short-term mortality is high in dialysis patients, but longer-term outcomes are largely unknown. We therefore assessed patient recovery in a large cohort of dialysis patients 3 months after their COVID-19 diagnosis. Methods. We analyzed data on dialysis patients diagnosed with COVID-19 from 1 February 2020 to 31 March 2021 from the European Renal Association COVID-19 Database (ERACODA). The outcomes studied were patient survival, residence and functional and mental health status (estimated by their treating physician) 3 months after COVID-19 diagnosis. Complete follow-up data were available for 854 surviving patients. Patient characteristics associated with recovery were analyzed using logistic regression. Results. In 2449 hemodialysis patients (mean ± SD age 67.5 ± 14.4 years, 62% male), survival probabilities at 3 months after COVID-19 diagnosis were 90% for nonhospitalized patients (n = 1087), 73% for patients admitted to the hospital but not to an intensive care unit (ICU) (n = 1165) and 40% for those admitted to an ICU (n = 197). Patient survival hardly decreased between 28 days and 3 months after COVID-19 diagnosis. At 3 months, 87% functioned at their pre-existent functional and 94% at their pre-existent mental level. Only few of the surviving patients were still admitted to the hospital (0.8-6.3%) or a nursing home (∌5%). A higher age and frailty score at presentation and ICU admission were associated with worse functional outcome. Conclusions. Mortality between 28 days and 3 months after COVID-19 diagnosis was low and the majority of patients who survived COVID-19 recovered to their pre-existent functional and mental health level at 3 months after diagnosis

    Strong floristic distinctiveness across Neotropical successional forests

    Get PDF
    Forests that regrow naturally on abandoned fields are important for restoring biodiversity and ecosystem services, but can they also preserve the distinct regional tree floras? Using the floristic composition of 1215 early successional forests (≀20 years) in 75 human-modified landscapes across the Neotropic realm, we identified 14 distinct floristic groups, with a between-group dissimilarity of 0.97. Floristic groups were associated with location, bioregions, soil pH, temperature seasonality, and water availability. Hence, there is large continental-scale variation in the species composition of early successional forests, which is mainly associated with biogeographic and environmental factors but not with human disturbance indicators. This floristic distinctiveness is partially driven by regionally restricted species belonging to widespread genera. Early secondary forests contribute therefore to restoring and conserving the distinctiveness of bioregions across the Neotropical realm, and forest restoration initiatives should use local species to assure that these distinct floras are maintained

    Biodiversity and the functioning of tropical forests

    Get PDF
    Tropical forests are the most diverse terrestrial ecosystems. Moreover, their capacity for removal of carbon from the atmosphere makes them important for climate change mitigation. Theories predict that species use resources in a different way, and therefore high species diversity would result in more efficient resource use and higher total carbon removal. These theories, however, have yet not been clearly demonstrated for tropical forests. In this thesis, I evaluated how biodiversity of plants and their traits influenced carbon removal. I used data collected in different tropical forest types and at different spatial and temporal scales. I found that biodiversity was important for carbon removal especially at large spatial scales (e.g. the Amazon) where biodiversity varies strongly, and at long temporal scales (e.g. >200 years) where high biodiversity functions as a buffer for changing environmental conditions. In this way biodiversity contributes to long-term stable forests and a safe climate. </p

    Explaining biomass growth of tropical canopy trees: the importance of sapwood

    Get PDF
    Tropical forests are important in worldwide carbon (C) storage and sequestration. C sequestration of these forests may especially be determined by the growth of canopy trees. However, the factors driving variation in growth among such large individuals remain largely unclear. We evaluate how crown traits [total leaf area, specific leaf area and leaf nitrogen (N) concentration] and stem traits [sapwood area (SA) and sapwood N concentration] measured for individual trees affect absolute biomass growth for 43 tropical canopy trees belonging to four species, in a moist forest in Bolivia. Biomass growth varied strongly among trees, between 17.3 and 367.3 kg year-1, with an average of 105.4 kg year-1. We found that variation in biomass growth was chiefly explained by a positive effect of SA, and not by tree size or other traits examined. SA itself was positively associated with sapwood growth, sapwood lifespan and basal area. We speculate that SA positively affects the growth of individual trees mainly by increasing water storage, thus securing water supply to the crown. These positive roles of sapwood on growth apparently offset the increased respiration costs incurred by more sapwood. This is one of the first individual-based studies to show that variation in sapwood traits—and not crown traits—explains variation in growth among tropical canopy trees. Accurate predictions of C dynamics in tropical forests require similar studies on biomass growth of individual trees as well as studies evaluating the dual effect of sapwood (water provision vs. respiratory costs) on tropical tree growth

    Are lianas more drought-tolerant than trees? A test for the role of hydraulic architecture and other stem and leaf traits

    Get PDF
    Lianas are an important component of Neotropical forests, where evidence suggests that they are increasing in abundance and biomass. Lianas are especially abundant in seasonally dry tropical forests, and as such it has been hypothesized that they are better adapted to drought, or that they are at an advantage under the higher light conditions in these forests. However, the physiological and morphological characteristics that allow lianas to capitalize more on seasonal forest conditions compared to trees are poorly understood. Here, we evaluate how saplings of 21 tree and liana species from a seasonal tropical forest in Panama differ in cavitation resistance (P50) and maximum hydraulic conductivity (Kh), and how saplings of 24 tree and liana species differ in four photosynthetic leaf traits (e.g., maximum assimilation and stomatal conductance) and six morphological leaf and stem traits (e.g., wood density, maximum vessel length, and specific leaf area). At the sapling stage, lianas had a lower cavitation resistance than trees, implying lower drought tolerance, and they tended to have a higher potential hydraulic conductivity. In contrast to studies focusing on adult trees and lianas, we found no clear differences in morphological and photosynthetic traits between the life forms. Possibly, lianas and trees are functionally different at later ontogenetic stages, with lianas having deeper root systems than trees, or experience their main growth advantage during wet periods, when they are less vulnerable to cavitation and can achieve high conductivity. This study shows, however, that the hydraulic characteristics and functional traits that we examined do not explain differences in liana and tree distributions in seasonal forest

    Data underlying the publication: Soil resistance and recovery during Neotropical forest succession

    No full text
    To provide a general picture of how soil properties change during secondary succession, we collected soil samples from 21 secondary forest chronosequences across the Neotropics. For the 21 chonosequence sites, we sampled soils from active cropland or pasture (if possible), secondary forests that differ in age, and old-growth forest. To assess changes in soil conditions, we used six soil properties: pH, bulk density, total organic carbon (C), total nitrogen (N), extractable phosphorus (P), and the ratio between C:N

    Shifting species and functional diversity due to abrupt changes in water availability in tropical dry forests

    Get PDF
    Recent insights show that tropical forests are shifting in species composition, possibly due to changing environmental conditions. However, we still poorly understand the forest response to different environmental change drivers, which limits our ability to predict the future of tropical forests. Although some studies have evaluated drought effects on tree communities, we know little about the influence of increased water availability. Here, we evaluated how an increase in water availability caused by an artificial reservoir affected temporal changes in forest structure, species and functional diversity, and community‐weighted mean traits. Furthermore, we evaluated how demographical groups (recruits, survivors and trees that died) contributed to these temporal changes in tropical dry forests. We present data for the dynamics of forest change over a 10‐year period for 120 permanent plots that were far from the water’s edge before reservoir construction and are now close to the water’s edge (0–60 m). Plots close to the water’s edge had an abrupt increase in water availability, while distant plots did not. Plots close to the water’s edge showed an increase in species and functional diversity, and in the abundance of species with traits associated with low drought resistance (i.e., evergreen species with simple leaves and low wood density), whereas plots far from the water’s edge did not change. Changes in overall community metrics were mainly due to recruits rather than to survivors or dead trees. Overall stand basal area did not change because growth and recruitment were balanced by mortality. Synthesis. Our results showed that tropical dry forests can respond quickly to abrupt changes in environmental conditions. Temporal changes in vegetation metrics due to increased water availability were mainly attributed to recruits, suggesting that these effects are lasting and may become stronger over time. The lack of increase in basal area towards the water’s edge, and the shift towards higher abundance of soft‐wooded species, could reduce the carbon stored and increase the forest’s vulnerability to extreme weather events. Further “accidental” large‐scale field experiments like ours could provide more insights into forest responses and resilience to global change
    corecore