91 research outputs found

    Viability and Burden of Leishmania in Extralesional Sites during Human Dermal Leishmaniasis

    Get PDF
    Understanding of the dynamics and distribution of Leishmania in the human host is fundamental to the targeting of control measures and their evaluation. Amplification of parasite gene sequences in clinical samples from cutaneous leishmaniasis patients has provided evidence of Leishmania in blood, other tissues and sites distinct from the lesion and of persistence of infection after clinical resolution of disease. However, there is uncertainty about the interpretation of the presence of Leishmania DNA as indicative of viable parasites. Because RNA is short-lived and labile, its presence provides an indicator of viability. We amplified Leishmania 7SLRNA, a molecule involved in intracellular protein translocation, to establish viability and estimate parasite load in blood monocytes, tonsil swab samples, and tissue fluid from healthy skin of patients with dermal leishmaniasis. Results showed that during active dermal leishmaniasis, viable Leishmania are present in blood monocytes, tonsils and normal skin in quantities similar to that in lesions, demonstrating widespread dissemination of infection and subclinical involvement of tissues beyond the lesion site. Leishmania 7SLRNA will be useful in deciphering the role of human infection in transmission

    Phase II Evaluation of Sensitivity and Specificity of PCR and NASBA Followed by Oligochromatography for Diagnosis of Human African Trypanosomiasis in Clinical Samples from D.R. Congo and Uganda

    Get PDF
    Diagnosis plays a central role in the control of human African trypanosomiasis (HAT) whose mainstay in disease control is chemotherapy. However, accurate diagnosis is hampered by the absence of sensitive techniques for parasite detection. Without concentrating the blood, detection thresholds can be as high as 10,000 trypanosomes per milliliter of blood. The polymerase chain reaction (PCR) and nucleic acid sequence-based amplification (NASBA) are promising molecular diagnostics that generally yield high sensitivity and could improve case detection. Recently, these two tests were coupled to oligochromatography (OC) for simplified and standardized detection of amplified products, eliminating the need for electrophoresis. In this study, we evaluated the diagnostic accuracy of these two novel tests on blood specimens from HAT patients and healthy endemic controls from D.R. Congo and Uganda. Both tests exhibited good sensitivity and specificity compared to the current diagnostic tests and may be valuable tools for sensitive and specific parasite detection in clinical specimens. These standardized molecular test formats open avenues for improved case detection, particularly in epidemiological studies and in disease diagnosis at reference centres

    Absence of the MGMT protein as well as methylation of the MGMT promoter predict the sensitivity for temozolomide

    Get PDF
    The DNA repair protein O(6)-methylguanine-DNA methyltransferase (MGMT) can cause resistance to the alkylating drug temozolomide (TMZ). The purpose of this study was to determine the relationship between the MGMT status, determined by means of several techniques and methods, and the cytotoxic response to TMZ in 11 glioblastoma multiforme (GBM) cell lines and 5 human tumour cell lines of other origins. Cell survival was analysed by clonogenic assay. The MGMT protein levels were assessed by western blot analysis. The MGMT promoter methylation levels were determined using methylation-specific multiplex ligation-dependent probe amplification (MS-MLPA) and quantitative real-time methylation-specific PCR (qMSP). On the basis of the results of these techniques, six GBM cell lines were selected and subjected to bisulphite sequencing. The MGMT protein was detected in all TMZ-resistant cell lines, whereas no MGMT protein could be detected in cell lines that were TMZ sensitive. The MS-MLPA results were able to predict TMZ sensitivity in 9 out of 16 cell lines (56%). The qMSP results matched well with TMZ sensitivity in 11 out of 12 (92%) glioma cell lines. In addition, methylation as detected by bisulphite sequencing seemed to be predictive of TMZ sensitivity in all six cell lines analysed (100%). The MGMT protein expression more than MGMT promoter methylation status predicts the response to TMZ in human tumour cell line

    Diagnostic Accuracy of the Leishmania OligoC-TesT and NASBA-Oligochromatography for Diagnosis of Leishmaniasis in Sudan

    Get PDF
    The leishmaniases are a group of vector-borne diseases caused by protozoan parasites of the genus Leishmania. The parasites are transmitted by phlebotomine sand flies and can cause, depending on the infecting species, three clinical manifestations of leishmaniasis: visceral leishmaniasis (VL), post kala-azar dermal leishmaniasis (PKDL) and cutaneous leishmaniasis (CL) including the mucocutaneous form. VL, PKDL as well as CL are endemic in several parts of Sudan, and VL especially represents a major health problem in this country. Molecular tests such as the polymerase chain reaction (PCR) or nucleic acid sequence based assay (NASBA) are powerful techniques for accurate detection of the parasite in clinical specimens, but broad use is hampered by their complexity and lack of standardisation. Recently, the Leishmania OligoC-TesT and NASBA-Oligochromatography were developed as simplified and standardised PCR and NASBA formats. In this study, both tests were phase II evaluated for diagnosis of VL, PKDL and CL in Sudan

    Expression of interferon-γ in human adrenal gland and kidney tumours

    Get PDF
    It is known that interferon-γ (IFN-γ) is produced by activated T and NK lymphoid cells, mononuclear cells, and macrophage and dendritic cells. Our previous studies have shown that IFN-γ-like immunoreactivity also appears in human adrenal cortical tumour and phaeochromocytoma. To investigate whether human tumour cells can produce IFN-γ, we examined 429 biopsy specimens of 30 kinds of tumour and tumour-surrounding tissues in adrenal glands and in kidneys by using immunohistochemistry and in situ hybridisation. IFN-γ immunoactivity was shown in 34.3% of the adrenal cortical adenomas, 50% of the adrenal cortical carcinomas, 26.7% of the phaeochromocytomas, 26.7% of the clear cell renal cell carcinomas (RCCs), 22% of the adrenal cortexes and 40% of medullas adjacent to tumours. The positive samples and expression areas were well overlapped between the IFN-γ mRNA and the immunohistochemistry staining. Western blot analysis has further confirmed the immunohistochemistry results by showing a distinct IFN-γ band corresponding to 17.4 kDa in tissue extracts from adrenal cortical adenoma, phaeochromocytoma and clear cell RCCs. These results indicate that IFN-γ is produced by some types of tumour cells, suggesting it may play a dual role in the development of these tumours

    Mucosal Leishmaniasis Caused by Leishmania (Viannia) braziliensis and Leishmania (Viannia) guyanensis in the Brazilian Amazon

    Get PDF
    Background: Leishmania (Viannia) braziliensis is a parasite recognized as the most important etiologic agent of mucosal leishmaniasis (ML) in the New World. In Amazonia, seven different species of Leishmania, etiologic agents of human Cutaneous Leishmaniasis, have been described. Isolated cases of ML have been described for several different species of Leishmania: L. (V.) panamensis, L. (V.) guyanensis and L. (L.) amazonensis. Methodology: Leishmania species were characterized by polymerase chain reaction (PCR) of tissues taken from mucosal biopsies of Amazonian patients who were diagnosed with ML and treated at the Tropical Medicine Foundation of Amazonas (FMTAM) in Manaus, Amazonas state, Brazil. Samples were obtained retrospectively from the pathology laboratory and prospectively from patients attending the aforementioned tertiary care unit. Results: This study reports 46 cases of ML along with their geographical origin, 30 cases caused by L. (V.) braziliensis and 16 cases by L. (V.) guyanensis. This is the first record of ML cases in 16 different municipalities in the state of Amazonas and of simultaneous detection of both species in 4 municipalities of this state. It is also the first record of ML caused by L. (V.) guyanensis in the states of Para, Acre, and Rondonia and cases of ML caused by L. (V.) braziliensis in the state of Rondonia. Conclusions/Significance: L. (V.) braziliensis is the predominant species that causes ML in the Amazon region. However, contrary to previous studies, L. (V.) guyanensis is also a significant causative agent of ML within the region. The clinical and epidemiological expression of ML in the Manaus region is similar to the rest of the country, although the majority of ML cases are found south of the Amazon River.SUFRAMA[016/2004

    Arthropod venom Hyaluronidases: biochemical properties and potential applications in medicine and biotechnology

    Full text link
    • …
    corecore