31 research outputs found

    Chronic anemia and unexplained inflammation:think of VEXAS syndrome

    Get PDF
    AchtergrondHet VEXAS-syndroom is een auto-inflammatoire ziekte die ontstaat door een verworven of somatische mutatie in het UBA1-gen. Deze X-gebonden aandoening komt vrijwel alleen voor bij mannen en openbaart zich pas op oudere leeftijd.CasusWij beschrijven een patiënt met het VEXAS-syndroom bij wie in eerste instantie niet de juiste diagnose werd gesteld. Nadat de diagnose was gesteld op basis van genetisch onderzoek, behandelden wij de patiënt met prednisolon en de IL-6-remmer tocilizumab.ConclusieBij mannen vanaf de middelbare leeftijd die een multisystemisch inflammatoir ziektebeeld laten zien zonder infectie, moet de diagnose ‘VEXAS-syndroom’ worden overwogen, zeker wanneer er sprake is van een bijkomende macrocytaire anemie. De diagnose kan eenvoudig worden gesteld op basis van gericht onderzoek naar mutaties in UBA1. De behandeling bestaat vooral uit toediening van immunosuppressiva. De mortaliteit is hoog.BACKGROUND: VEXAS-syndrome is an X-linked acquired multisystemic autoinflammatory disease caused by a somatic mutation in UBA1.CASE DESCRIPTION: In this manuscript we describe a 79-year-old male suffering from skin lesions, macrocytic anemia and lab results showing inflammation in which, based on finding a mutation in UBA1, VEXAS was diagnosed. He was treated with a combination of high dose corticosteroids and anti-IL-6 with good response.CONCLUSION: In middle aged males presenting with multisystemic inflammation without evidence of infection a diagnosis of VEXAS should be considered, especially if there is evidence of a macrocytic anemia. Early testing for UBA1 mutations helps in making the diagnosis. Despite treatment with intensive immunosuppression mortality remains high.</p

    Chronic anemia and unexplained inflammation:think of VEXAS syndrome

    Get PDF
    AchtergrondHet VEXAS-syndroom is een auto-inflammatoire ziekte die ontstaat door een verworven of somatische mutatie in het UBA1-gen. Deze X-gebonden aandoening komt vrijwel alleen voor bij mannen en openbaart zich pas op oudere leeftijd.CasusWij beschrijven een patiënt met het VEXAS-syndroom bij wie in eerste instantie niet de juiste diagnose werd gesteld. Nadat de diagnose was gesteld op basis van genetisch onderzoek, behandelden wij de patiënt met prednisolon en de IL-6-remmer tocilizumab.ConclusieBij mannen vanaf de middelbare leeftijd die een multisystemisch inflammatoir ziektebeeld laten zien zonder infectie, moet de diagnose ‘VEXAS-syndroom’ worden overwogen, zeker wanneer er sprake is van een bijkomende macrocytaire anemie. De diagnose kan eenvoudig worden gesteld op basis van gericht onderzoek naar mutaties in UBA1. De behandeling bestaat vooral uit toediening van immunosuppressiva. De mortaliteit is hoog.BACKGROUND: VEXAS-syndrome is an X-linked acquired multisystemic autoinflammatory disease caused by a somatic mutation in UBA1.CASE DESCRIPTION: In this manuscript we describe a 79-year-old male suffering from skin lesions, macrocytic anemia and lab results showing inflammation in which, based on finding a mutation in UBA1, VEXAS was diagnosed. He was treated with a combination of high dose corticosteroids and anti-IL-6 with good response.CONCLUSION: In middle aged males presenting with multisystemic inflammation without evidence of infection a diagnosis of VEXAS should be considered, especially if there is evidence of a macrocytic anemia. Early testing for UBA1 mutations helps in making the diagnosis. Despite treatment with intensive immunosuppression mortality remains high.</p

    Chronic anemia and unexplained inflammation:think of VEXAS syndrome

    Get PDF
    AchtergrondHet VEXAS-syndroom is een auto-inflammatoire ziekte die ontstaat door een verworven of somatische mutatie in het UBA1-gen. Deze X-gebonden aandoening komt vrijwel alleen voor bij mannen en openbaart zich pas op oudere leeftijd.CasusWij beschrijven een patiënt met het VEXAS-syndroom bij wie in eerste instantie niet de juiste diagnose werd gesteld. Nadat de diagnose was gesteld op basis van genetisch onderzoek, behandelden wij de patiënt met prednisolon en de IL-6-remmer tocilizumab.ConclusieBij mannen vanaf de middelbare leeftijd die een multisystemisch inflammatoir ziektebeeld laten zien zonder infectie, moet de diagnose ‘VEXAS-syndroom’ worden overwogen, zeker wanneer er sprake is van een bijkomende macrocytaire anemie. De diagnose kan eenvoudig worden gesteld op basis van gericht onderzoek naar mutaties in UBA1. De behandeling bestaat vooral uit toediening van immunosuppressiva. De mortaliteit is hoog.BACKGROUND: VEXAS-syndrome is an X-linked acquired multisystemic autoinflammatory disease caused by a somatic mutation in UBA1.CASE DESCRIPTION: In this manuscript we describe a 79-year-old male suffering from skin lesions, macrocytic anemia and lab results showing inflammation in which, based on finding a mutation in UBA1, VEXAS was diagnosed. He was treated with a combination of high dose corticosteroids and anti-IL-6 with good response.CONCLUSION: In middle aged males presenting with multisystemic inflammation without evidence of infection a diagnosis of VEXAS should be considered, especially if there is evidence of a macrocytic anemia. Early testing for UBA1 mutations helps in making the diagnosis. Despite treatment with intensive immunosuppression mortality remains high.</p

    Dexamethasone attenuates interferon-related cytokine hyperresponsiveness in COVID-19 patients

    Get PDF
    Background: Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Although its broad immunosuppressive effects are well-described, the immunological mechanisms modulated by dexamethasone in patients hospitalized with COVID-19 remain to be elucidated.Objective: We combined functional immunological assays and an omics-based approach to investigate the in vitro and in vivo effects of dexamethasone in the plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients.Methods: Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward between February and July, 2021. Whole blood transcriptomic and targeted plasma proteomic analyses were performed before and after starting dexamethasone treatment. PBMCs were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and transcriptome and cytokine responses were assessed.Results: Dexamethasone efficiently inhibited SARS-CoV-2-induced in vitro expression of chemokines and cytokines in PBMCs at the transcriptional and protein level. Dexamethasone treatment in COVID-19 patients resulted in down-regulation of genes related to type I and II interferon (IFN) signaling in whole blood immune cells. In addition, dexamethasone attenuated circulating concentrations of secreted interferon-stimulating gene 15 (ISG15) and pro-inflammatory cytokines and chemokines correlating with disease severity and lethal outcomes, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), chemokine ligand 2 (CCL2), C-X-C motif ligand 8 (CXCL8), and C-X-C motif chemokine ligand 10 (CXCL10). In PBMCs from COVID-19 patients that were stimulated ex vivo with multiple pathogens or Toll-like receptor (TLR) ligands, dexamethasone efficiently inhibited cytokine responses.Conclusion: We describe the anti-inflammatory impact of dexamethasone on the pathways contributing to cytokine hyperresponsiveness observed in severe manifestations of COVID-19, including type I/II IFN signaling. Dexamethasone could have adverse effects in COVID-19 patients with mild symptoms by inhibiting IFN responses in early stages of the disease, whereas it exhibits beneficial effects in patients with severe clinical phenotypes by efficiently diminishing cytokine hyperresponsiveness.</p

    Dexamethasone attenuates interferon-related cytokine hyperresponsiveness in COVID-19 patients

    Get PDF
    Background: Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Although its broad immunosuppressive effects are well-described, the immunological mechanisms modulated by dexamethasone in patients hospitalized with COVID-19 remain to be elucidated.Objective: We combined functional immunological assays and an omics-based approach to investigate the in vitro and in vivo effects of dexamethasone in the plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients.Methods: Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward between February and July, 2021. Whole blood transcriptomic and targeted plasma proteomic analyses were performed before and after starting dexamethasone treatment. PBMCs were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and transcriptome and cytokine responses were assessed.Results: Dexamethasone efficiently inhibited SARS-CoV-2-induced in vitro expression of chemokines and cytokines in PBMCs at the transcriptional and protein level. Dexamethasone treatment in COVID-19 patients resulted in down-regulation of genes related to type I and II interferon (IFN) signaling in whole blood immune cells. In addition, dexamethasone attenuated circulating concentrations of secreted interferon-stimulating gene 15 (ISG15) and pro-inflammatory cytokines and chemokines correlating with disease severity and lethal outcomes, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), chemokine ligand 2 (CCL2), C-X-C motif ligand 8 (CXCL8), and C-X-C motif chemokine ligand 10 (CXCL10). In PBMCs from COVID-19 patients that were stimulated ex vivo with multiple pathogens or Toll-like receptor (TLR) ligands, dexamethasone efficiently inhibited cytokine responses.Conclusion: We describe the anti-inflammatory impact of dexamethasone on the pathways contributing to cytokine hyperresponsiveness observed in severe manifestations of COVID-19, including type I/II IFN signaling. Dexamethasone could have adverse effects in COVID-19 patients with mild symptoms by inhibiting IFN responses in early stages of the disease, whereas it exhibits beneficial effects in patients with severe clinical phenotypes by efficiently diminishing cytokine hyperresponsiveness.</p

    Dexamethasone attenuates interferon-related cytokine hyperresponsiveness in COVID-19 patients

    Get PDF
    Background: Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Although its broad immunosuppressive effects are well-described, the immunological mechanisms modulated by dexamethasone in patients hospitalized with COVID-19 remain to be elucidated.Objective: We combined functional immunological assays and an omics-based approach to investigate the in vitro and in vivo effects of dexamethasone in the plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients.Methods: Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward between February and July, 2021. Whole blood transcriptomic and targeted plasma proteomic analyses were performed before and after starting dexamethasone treatment. PBMCs were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and transcriptome and cytokine responses were assessed.Results: Dexamethasone efficiently inhibited SARS-CoV-2-induced in vitro expression of chemokines and cytokines in PBMCs at the transcriptional and protein level. Dexamethasone treatment in COVID-19 patients resulted in down-regulation of genes related to type I and II interferon (IFN) signaling in whole blood immune cells. In addition, dexamethasone attenuated circulating concentrations of secreted interferon-stimulating gene 15 (ISG15) and pro-inflammatory cytokines and chemokines correlating with disease severity and lethal outcomes, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), chemokine ligand 2 (CCL2), C-X-C motif ligand 8 (CXCL8), and C-X-C motif chemokine ligand 10 (CXCL10). In PBMCs from COVID-19 patients that were stimulated ex vivo with multiple pathogens or Toll-like receptor (TLR) ligands, dexamethasone efficiently inhibited cytokine responses.Conclusion: We describe the anti-inflammatory impact of dexamethasone on the pathways contributing to cytokine hyperresponsiveness observed in severe manifestations of COVID-19, including type I/II IFN signaling. Dexamethasone could have adverse effects in COVID-19 patients with mild symptoms by inhibiting IFN responses in early stages of the disease, whereas it exhibits beneficial effects in patients with severe clinical phenotypes by efficiently diminishing cytokine hyperresponsiveness.</p

    Dexamethasone attenuates interferon-related cytokine hyperresponsiveness in COVID-19 patients

    Get PDF
    Background: Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Although its broad immunosuppressive effects are well-described, the immunological mechanisms modulated by dexamethasone in patients hospitalized with COVID-19 remain to be elucidated.Objective: We combined functional immunological assays and an omics-based approach to investigate the in vitro and in vivo effects of dexamethasone in the plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients.Methods: Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward between February and July, 2021. Whole blood transcriptomic and targeted plasma proteomic analyses were performed before and after starting dexamethasone treatment. PBMCs were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and transcriptome and cytokine responses were assessed.Results: Dexamethasone efficiently inhibited SARS-CoV-2-induced in vitro expression of chemokines and cytokines in PBMCs at the transcriptional and protein level. Dexamethasone treatment in COVID-19 patients resulted in down-regulation of genes related to type I and II interferon (IFN) signaling in whole blood immune cells. In addition, dexamethasone attenuated circulating concentrations of secreted interferon-stimulating gene 15 (ISG15) and pro-inflammatory cytokines and chemokines correlating with disease severity and lethal outcomes, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), chemokine ligand 2 (CCL2), C-X-C motif ligand 8 (CXCL8), and C-X-C motif chemokine ligand 10 (CXCL10). In PBMCs from COVID-19 patients that were stimulated ex vivo with multiple pathogens or Toll-like receptor (TLR) ligands, dexamethasone efficiently inhibited cytokine responses.Conclusion: We describe the anti-inflammatory impact of dexamethasone on the pathways contributing to cytokine hyperresponsiveness observed in severe manifestations of COVID-19, including type I/II IFN signaling. Dexamethasone could have adverse effects in COVID-19 patients with mild symptoms by inhibiting IFN responses in early stages of the disease, whereas it exhibits beneficial effects in patients with severe clinical phenotypes by efficiently diminishing cytokine hyperresponsiveness.</p

    Dexamethasone attenuates interferon-related cytokine hyperresponsiveness in COVID-19 patients

    Get PDF
    Background: Dexamethasone improves the survival of COVID-19 patients in need of supplemental oxygen therapy. Although its broad immunosuppressive effects are well-described, the immunological mechanisms modulated by dexamethasone in patients hospitalized with COVID-19 remain to be elucidated.Objective: We combined functional immunological assays and an omics-based approach to investigate the in vitro and in vivo effects of dexamethasone in the plasma and peripheral blood mononuclear cells (PBMCs) of COVID-19 patients.Methods: Hospitalized COVID-19 patients eligible for dexamethasone therapy were recruited from the general care ward between February and July, 2021. Whole blood transcriptomic and targeted plasma proteomic analyses were performed before and after starting dexamethasone treatment. PBMCs were isolated from healthy individuals and COVID-19 patients and stimulated with inactivated SARS-CoV-2 ex vivo in the presence or absence of dexamethasone and transcriptome and cytokine responses were assessed.Results: Dexamethasone efficiently inhibited SARS-CoV-2-induced in vitro expression of chemokines and cytokines in PBMCs at the transcriptional and protein level. Dexamethasone treatment in COVID-19 patients resulted in down-regulation of genes related to type I and II interferon (IFN) signaling in whole blood immune cells. In addition, dexamethasone attenuated circulating concentrations of secreted interferon-stimulating gene 15 (ISG15) and pro-inflammatory cytokines and chemokines correlating with disease severity and lethal outcomes, such as tumor necrosis factor (TNF), interleukin-6 (IL-6), chemokine ligand 2 (CCL2), C-X-C motif ligand 8 (CXCL8), and C-X-C motif chemokine ligand 10 (CXCL10). In PBMCs from COVID-19 patients that were stimulated ex vivo with multiple pathogens or Toll-like receptor (TLR) ligands, dexamethasone efficiently inhibited cytokine responses.Conclusion: We describe the anti-inflammatory impact of dexamethasone on the pathways contributing to cytokine hyperresponsiveness observed in severe manifestations of COVID-19, including type I/II IFN signaling. Dexamethasone could have adverse effects in COVID-19 patients with mild symptoms by inhibiting IFN responses in early stages of the disease, whereas it exhibits beneficial effects in patients with severe clinical phenotypes by efficiently diminishing cytokine hyperresponsiveness.</p

    Genetic Screening for TLR7 Variants in Young and Previously Healthy Men With Severe COVID-19

    Get PDF
    Introduction: Loss-of-function TLR7 variants have been recently reported in a small number of males to underlie strong predisposition to severe COVID-19. We aimed to determine the presence of these rare variants in young men with severe COVID-19. Methods: We prospectively studied males between 18 and 50 years-old without predisposing comorbidities that required at least high-flow nasal oxygen to treat COVID-19. The coding region of TLR7 was sequenced to assess the presence of potentially deleterious variants. Results: TLR7 missense variants were identified in two out of 14 patients (14.3%). Overall, the median age was 38 (IQR 30-45) years. Both variants were not previously reported in population control databases and were predicted to be damaging by in silico predictors. In a 30-year-old patient a maternally inherited variant [c.644A>G; p.(Asn215Ser)] was identified, co-segregating in his 27-year-old brother who also contracted severe COVID-19. A second variant [c.2797T>C; p.(Trp933Arg)] was found in a 28-year-old patient, co-segregating in his 24-year-old brother who developed mild COVID-19. Functional testing of this variant revealed decreased type I and II interferon responses in peripheral mononuclear blood cells upon stimulation with the TLR7 agonist imiquimod, confirming a loss-of-function effect. Conclusions: This study supports a rationale for the genetic screening for TLR7 variants in young men with severe COVID-19 in the absence of other relevant risk factors. A diagnosis of TLR7 deficiency could not only inform on treatment options for the patient, but also enables pre-symptomatic testing of at-risk male relatives with the possibility of instituting early preventive and therapeutic interventions

    Human germline heterozygous gain-of-function STAT6 variants cause severe allergic disease

    Get PDF
    STAT6 (signal transducer and activator of transcription 6) is a transcription factor that plays a central role in the pathophysiology of allergic inflammation. We have identified 16 patients from 10 families spanning three continents with a profound phenotype of early-life onset allergic immune dysregulation, widespread treatment-resistant atopic dermatitis, hypereosinophilia with esosinophilic gastrointestinal disease, asthma, elevated serum IgE, IgE-mediated food allergies, and anaphylaxis. The cases were either sporadic (seven kindreds) or followed an autosomal dominant inheritance pattern (three kindreds). All patients carried monoallelic rare variants in STAT6 and functional studies established their gain-of-function (GOF) phenotype with sustained STAT6 phosphorylation, increased STAT6 target gene expression, and TH2 skewing. Precision treatment with the anti-IL-4Rα antibody, dupilumab, was highly effective improving both clinical manifestations and immunological biomarkers. This study identifies heterozygous GOF variants in STAT6 as a novel autosomal dominant allergic disorder. We anticipate that our discovery of multiple kindreds with germline STAT6 GOF variants will facilitate the recognition of more affected individuals and the full definition of this new primary atopic disorder
    corecore