40 research outputs found

    Synthesis of highly branched alpha-glucans with different structures using GH13 and GH57 glycogen branching enzymes

    Get PDF
    Glycogen branching enzymes (GBEs) convert starch into branched alpha-glucan polymers. To explore if the amylose content of substrates effects the structure of the branched alpha-glucans, mixtures of amylose and amylopectin were converted by four thermophilic GBEs. The degree of branching and molecular weight of the products increased with an increasing percentage of amylose with the GH57 GBEs of Thermus thermophilus and Thermococcus kodakarensis, and the GH13 GBEs of Rhodothermus marinas and Petrotoga mobilis. The only exception is that the degree of branching of the Petrotoga mobilis GBE products is not influenced by the amylose content. A second difference is the relatively high hydrolytic activity of two GH57 GBEs, while the two GH13 GBEs have almost no hydrolytic activity. Moreover, the two GH13 GBEs synthesize branched alpha-glucans with a narrow molecular weight distribution, while the two GH57 GBEs products consist of two or three molecular weight fractions

    The influence of amylose content on the modification of starches by glycogen branching enzymes

    Get PDF
    Glycogen branching enzymes (GBEs) have been used to generate new branches in starches for producing slowly digestible starches. The aim of this study was to expand the knowledge about the mode of action of these enzymes by identifying structural aspects of starchy substrates affecting the products generated by different GBEs. The structures obtained from incubating five GBEs (three from glycoside hydrolase family (GH) 13 and two from GH57) on five different substrates exhibited minor but statistically significant correlations between the amount of longer chains (degree of polymerization (DP) 9-24) of the product and both the amylose content and the degree of branching of the substrate (Pearson correlation coefficient of ≤-0.773 and ≥0.786, respectively). GH57 GBEs mainly generated large products with long branches (100-700 kDa and DP 11-16) whereas GH13 GBEs produced smaller products with shorter branches (6-150 kDa and DP 3-10)

    Biomass and phycocyanin content of heterotrophic Galdieria sulphuraria 074G under maltodextrin and granular starches-feeding conditions

    Get PDF
    A major disadvantage of microalgal cultivation is limited biomass yields due to the autotrophic lifestyle of most microalgal species. Heterotrophic growth on a suitable carbon source and oxygen can overcome such limitations. The red microalga Galdieria sulphuraria strain 074G grows heterotrophically on glucose and a number of other carbon sources while constitutively producing photopigments, including the blue-colored phycocyanin, a natural food colorant. Galdieria sulphuraria strain 074G grew well on maltodextrins as well as on granular starch in combination with the enzyme cocktail Stargen002. The maltodextrin cultures produced 2 mg phycocyanin per gram substrate, being slightly more than on glucose. The phycocyanin extracted from maltodextrin-grown cultures was thermostable up to 55 °C. Maltodextrins can be a cheap alternative to glucose syrups for the production of phycocyanin as natural food colorant

    The glycogen of Galdieria sulphuraria as alternative to starch for the production of slowly digestible and resistant glucose polymers

    Get PDF
    Highly branched glucose polymers produced from starch are applied in various products, such as peritoneal dialysis solutions and sports drinks. Due to its insoluble, granular nature, the use of native starch as substrate requires an energy consuming pre-treatment to achieve solubilization at the expense of process costs. Glycogen, like starch, is also a natural glucose polymer that shows more favorable features, since it is readily soluble in cold water and more accessible by enzymes. The extremophilic red microalga Galdieria sulphuraria accumulates large amounts of a small, highly branched glycogen that could represent a good alternative to starch as substrate for the production of highly branched glucose polymers. In the present work, we analyzed the structure-properties relationship of this glycogen in its native form and after treatment with amyloglucosidase and compared it to highly branched polymers produced from potato starch. Glycogen showed lower susceptibility to digestive enzymes and significantly decreased viscosity in solution compared to polymers derived from starch, properties conferred by its shorter side chains and higher branch density. The action of amyloglucosidase on native glycogen was somewhat limited due to the high branch density but resulted in the production of a hyperbranched polymer that was virtually resistant to digestive enzymes. (C) 2017 Elsevier Ltd. All rights reserved

    Amylomaltase of Pyrobaculum aerophilum IM2 produces thermoreversible starch gels

    Get PDF
    Amylomaltases are 4-α-glucanotransferases (EC 2.4.1.25) of glycoside hydrolase family 77 that transfer α-1,4-linked glucans to another acceptor, which can be the 4-OH group of an α-1,4-linked glucan or glucose. The amylomaltase-encoding gene (PAE1209) from the hyperthermophilic archaeon Pyrobaculum aerophilum IM2 was cloned and expressed in Escherichia coli, and the gene product (PyAMase) was characterized. PyAMase displays optimal activity at pH 6.7 and 95°C and is the most thermostable amylomaltase described to date. The thermostability of PyAMase was reduced in the presence of 2 mM dithiothreitol, which agreed with the identification of two possible cysteine disulfide bridges in a three-dimensional model of PyAMase. The kinetics for the disproportionation of malto-oligosaccharides, inhibition by acarbose, and binding mode of the substrates in the active site were determined. Acting on gelatinized food-grade potato starch, PyAMase produced a thermoreversible starch product with gelatin-like properties. This thermoreversible gel has potential applications in the food industry. This is the first report on an archaeal amylomaltase

    Aspergillus niger genome-wide analysis reveals a large number of novel alpha-glucan acting enzymes with unexpected expression profiles

    Get PDF
    The filamentous ascomycete Aspergillus niger is well known for its ability to produce a large variety of enzymes for the degradation of plant polysaccharide material. A major carbon and energy source for this soil fungus is starch, which can be degraded by the concerted action of α-amylase, glucoamylase and α-glucosidase enzymes, members of the glycoside hydrolase (GH) families 13, 15 and 31, respectively. In this study we have combined analysis of the genome sequence of A. niger CBS 513.88 with microarray experiments to identify novel enzymes from these families and to predict their physiological functions. We have identified 17 previously unknown family GH13, 15 and 31 enzymes in the A. niger genome, all of which have orthologues in other aspergilli. Only two of the newly identified enzymes, a putative α-glucosidase (AgdB) and an α-amylase (AmyC), were predicted to play a role in starch degradation. The expression of the majority of the genes identified was not induced by maltose as carbon source, and not dependent on the presence of AmyR, the transcriptional regulator for starch degrading enzymes. The possible physiological functions of the other predicted family GH13, GH15 and GH31 enzymes, including intracellular enzymes and cell wall associated proteins, in alternative α-glucan modifying processes are discussed

    A new group of glycoside hydrolase family 13 α-amylases with an aberrant catalytic triad

    Get PDF
    α-Amylases are glycoside hydrolase enzymes that act on the α(1→4) glycosidic linkages in glycogen, starch, and related α-glucans, and are ubiquitously present in Nature. Most α-amylases have been classified in glycoside hydrolase family 13 with a typical (β/α)8-barrel containing two aspartic acid and one glutamic acid residue that play an essential role in catalysis. An atypical α-amylase (BmaN1) with only two of the three invariant catalytic residues present was isolated from Bacillus megaterium strain NL3, a bacterial isolate from a sea anemone of Kakaban landlocked marine lake, Derawan Island, Indonesia. In BmaN1 the third residue, the aspartic acid that acts as the transition state stabilizer, was replaced by a histidine. Three-dimensional structure modeling of the BmaN1 amino acid sequence confirmed the aberrant catalytic triad. Glucose and maltose were found as products of the action of the novel α-amylase on soluble starch, demonstrating that it is active in spite of the peculiar catalytic triad. This novel BmaN1 α-amylase is part of a group of α-amylases that all have this atypical catalytic triad, consisting of aspartic acid, glutamic acid and histidine. Phylogenetic analysis showed that this group of α-amylases comprises a new subfamily of the glycoside hydrolase family 13

    Enzymatic degradation of granular potato starch by Microbacterium aurum strain B8.A

    Get PDF
    Microbacterium aurum strain B8.A was isolated from the sludge of a potato starch-processing factory on the basis of its ability to use granular starch as carbon- and energy source. Extracellular enzymes hydrolyzing granular starch were detected in the growth medium of M. aurum B8.A, while the type strain M. aurum DSMZ 8600 produced very little amylase activity, and hence was unable to degrade granular starch. The strain B8.A extracellular enzyme fraction degraded wheat, tapioca and potato starch at 37 °C, well below the gelatinization temperature of these starches. Starch granules of potato were hydrolyzed more slowly than of wheat and tapioca, probably due to structural differences and/or surface area effects. Partial hydrolysis of starch granules by extracellular enzymes of strain B8.A resulted in large holes of irregular sizes in case of wheat and tapioca and many smaller pores of relatively homogeneous size in case of potato. The strain B8.A extracellular amylolytic system produced mainly maltotriose and maltose from both granular and soluble starch substrates; also, larger maltooligosaccharides were formed after growth of strain B8.A in rich medium. Zymogram analysis confirmed that a different set of amylolytic enzymes was present depending on the growth conditions of M. aurum B8.A. Some of these enzymes could be partly purified by binding to starch granules

    Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88

    Get PDF
    The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis

    Autosomal genetic variation is associated with DNA methylation in regions variably escaping X-chromosome inactivation

    Get PDF
    X-chromosome inactivation (XCI), i.e., the inactivation of one of the female X chromosomes, restores equal expression of X-chromosomal genes between females and males. However, ~10% of genes show variable degrees of escape from XCI between females, although little is known about the causes of variable XCI. Using a discovery data-set of 1867 females and 1398 males and a replication sample of 3351 females, we show that genetic variation at three autosomal loci is associated with female-specific changes in X-chromosome methylation. Through cis-eQTL expression analysis, we map these loci to the genes SMCHD1/METTL4, TRIM6/HBG2, and ZSCAN9. Low-expression alleles of the loci are predominantly associated with mild hypomethylation of CpG islands near genes known to variably escape XCI, implicating the autosomal genes in variable XCI. Together, these results suggest a genetic basis for variable escape from XCI and highlight the potential of a population genomics approach to identify genes involved in XCI
    corecore