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A B S T R A C T

Glycogen branching enzymes (GBEs) convert starch into branched α-glucan polymers. To explore if the amylose
content of substrates effects the structure of the branched α-glucans, mixtures of amylose and amylopectin were
converted by four thermophilic GBEs. The degree of branching and molecular weight of the products increased
with an increasing percentage of amylose with the GH57 GBEs of Thermus thermophilus and Thermococcus ko-
dakarensis, and the GH13 GBEs of Rhodothermus marinus and Petrotoga mobilis. The only exception is that the
degree of branching of the Petrotoga mobilis GBE products is not influenced by the amylose content. A second
difference is the relatively high hydrolytic activity of two GH57 GBEs, while the two GH13 GBEs have almost no
hydrolytic activity. Moreover, the two GH13 GBEs synthesize branched α-glucans with a narrow molecular
weight distribution, while the two GH57 GBEs products consist of two or three molecular weight fractions.

1. Introduction

Glycogen is produced by many microorganisms as a carbon and
energy reserve (Roach, 2002). It is a branched polymer of anhy-
droglucose residues linked via α-1,4-glycosidic linkages and α-1→4,6-
glycosidic bond branches. The branches are synthesized by glycogen
branching enzymes (GBEs, EC 2.4.1.18), which cleave an α-1,4-glyco-
sidic linkages in a linear chain and attach the cleaved off fragment onto
the 6-hydroxyl group of an anhydroglucose moiety located in a chain
segment of α-1,4-linked anhydroglucose residues (Devillers, Piper,
Ballicora, & Preiss, 2003; Kajiura et al., 2011; H. Takata et al., 2010).
GBEs are classified in two glycoside hydrolase (GH) families, 13 and 57
(Blesak & Janecek, 2012; Cantarel et al., 2009; Lombard, Ramulu,
Drula, Coutinho, & Henrissat, 2014; Zona, Chang-Pi-Hin, O’Donohue, &
Janecek, 2004). Although the GH13 and GH57 GBEs have a different
three-dimensional structural fold (Feng et al., 2016; Hayashi et al.,
2017; Na, Park, Jo, Cha, & Ha, 2017; Pal et al., 2010; Palomo et al.,
2011; Santos et al., 2011), they use the same catalytic steps, involving a
double displacement mechanism and a covalent glucosyl-enzyme in-
termediate (Chiba, 1997; Koshland, 1953).

While in-vivo GBEs act on growing α-glucan chains, in-vitro GBEs can
be utilized to modify starch, amylose, and amylopectin. GBE modified
starch, or (highly) branched maltodextrin, is characterized by the ab-
sence of long linear α-1,4-glucan chains and an increased percentage of

α-1→4,6 branches. The resulting product is highly soluble in water, and
has no tendency to retrograde because of the absence of amylose and
long linear α-1,4-linked chains. Various applications for highly bran-
ched maltodextrins have been reported, among which paper coating,
slowly digestible starch, sport drinks ingredient, spray drying aid, and
bio-friendly adhesive (Backer & Saniez, 2005; Ellis et al., 1998; Fuertes,
Roturier, & Petitjean, 2005; M. J. E. C. Van der Maarel, Ter Veer,
Vrieling-Smit, & Delnoye, 2014).

Currently, only the Rhodothermus obamensis GBEs is commercially
available, under the tradename Branchzyme® from Novozymes.
However, many more bacterial GH13 GBEs have been characterized,
among which the GBEs of Aquifex aeolicus (Hiroki Takata, Ohdan,
Takaha, Kuriki, & Okada, 2003; M. Van Der Maarel, Vos, Sanders, &
Dijkhuizen, 2003), Butyrivibrio fibrisolvens (Rumbak, Rawlings, Lindsey,
& Woods, 1991), Deinococcus geothermalis and Deinococcus radiodurans
(Palomo, Kralj, van der Maarel, & Dijkhuizen, 2009), Geobacillus
stearothermophilus (Hiroki Takata et al., 1994), Geobacillus thermo-
glucosidans (Ban et al., 2016; Liu et al., 2017), Mycobacterium tubercu-
losis (Garg, Alam, Kishan, & Agrawal, 2007), Thermomonospora curvata
(Fan, Xie, Zhan, Chen, & Tian, 2016), and Vibrio vulnificus (Jo, Park,
Jeong, Kim, & Park, 2015). Today only three GH57 GBEs have been
characterized; Pyrococcus horikoshii (Na et al., 2017), Thermococcus
kodakarensis (Murakami, Kanai, Takata, Kuriki, & Imanaka, 2006), and
Thermus thermophilus (Palomo et al., 2011). The biochemical studies
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have reported variations in substrate specificity, with the GH57 GBEs
having a higher catalytic activity with amylose than amylopectin, a
substrate preference not seen with the GH13 GBEs. The GH57 GBEs
have, in addition, a significant hydrolytic side activity, whereas the
GH13 GBEs show hardly any hydrolytic activity (Jo et al., 2015; Palomo
et al., 2009, 2011). The differences in reaction specificity are poten-
tially advantageous in the starch processing industry, as it may lead to
different types of highly branched α-glucan products.

Here the synthesizes of branched α-glucan by four thermophilic
GBEs is explored, revealing that the structure of the branched α-glucans
is depended on the amylose content of the substrate and the GBE used.

2. Materials and methods

2.1. Materials

Amylose V and waxy potato starch (Eliane 100) were provided by
Avebe (Veendam, Netherlands). Isoamylase (EC 3.2.1.68, specific ac-
tivity 260 U/mg), pullulanase M1 (EC 3.2.1.41, specific activity 34 U/
mg) and β-amylase (EC 3.2.1.2, specific activity 10,000 U/mL) were
obtained from Megazyme (Wicklow, Ireland). General chemicals were
obtained from Sigma Aldrich (Darmstadt, Germany) and VWR
(Amsterdam, Netherlands).

2.2. Production and purification of glycogen branching enzymes

Codon optimized genes encoding the GBEs from T. thermophilus HB8
(Ttgbe57) and T. kodakarensis KOD1 (Tkgbe57) were synthesized by
Baseclear (Leiden, The Netherlands), cloned into the pRSET A (Thermo
Fisher Scientific, Waltham) expression vector and overexpressed in E.
coli BL21 (DE3). The codon optimized genes encoding the GBEs from R.
marinus (Rmgbe13) and P. mobilis (Pmgbe13) were synthesized by
GeneScript (Hong Kong, China), and cloned into the pET28a expression
vector and overexpressed in E. coli BL21 (DE3). The four encoded
proteins carry a 6×His-tag at their N-terminus. E. coli was cultivated in
Luria-Bertani (LB) medium (10 g/L of tryptone, 5 g/L yeast extract, and
10 g/L NaCl). 100 μg/mL ampicillin was supplemented for Ttgbe57 and
Tkgbe57 expression and 50 μg/mL kanamycin was applied for Rmgbe13
and Pmgbe13 expression. Gene expression was induced by 0.1mM IPTG
at 18 °C, and cultivation was continued for 20 h with shaking at
150 rpm. The cells were harvested by centrifugation (5000×g, 10min,
4 °C), washed twice with 5mM phosphate buffer pH 7.0, and re-
suspended in binding buffer (20mM sodium phosphate, 500mM NaCl,
and 20mM imidazole, pH 7.4). Cells were lysed using a high-pressure
homogenizer (Emulsiflex-B15; Avestin, Ottawa, Canada). The soluble
fraction of the cell lysates was collected by centrifugation (20,000×g,
20 min, 4 °C). The proteins were purified in two steps. The soluble
fraction was incubated at 65 °C for 10min, followed by removal of
denatured proteins by centrifugation (20,000×g, 20 min, 4 °C); the heat
treatment was repeated once. Subsequently, the His-tagged proteins
were purified using the HisPurTM Ni-NTA Resin according to the
manufacturer’s protocol. Protein concentrations were quantified using
the Quick Start™ Bradford Protein Assay kit (Bio-Rad Laboratories,
Veenendaal, Netherlands). The purity and molecular mass of the pro-
teins were check by SDS-PAGE.

2.3. Enzyme activity assays

Amylose V, dissolved in 1M NaOH, and then neutralized to pH 7.0
with 1M HCl, was used as a model substrate. Branched α-glucan pro-
ducts were prepared at the optimal reaction conditions: 0.125% (w/v)
substrate, 35 μg/mL TtGBE57, 65 °C, pH 6.5; 30 μg/mL TkGBE57, 70 °C,
pH 7.0; 3.0 μg/mL RmGBE13, 65 °C, pH 7.0 and 3.0 μg/mL PmGBE13,
50 °C, pH 7.0.

Branching activity, representing the newly synthesized α-1,6-gly-
cosidic linkages, was quantified by measuring the increase in reducing

ends upon debranching of the product. The amount of reducing ends
was measured by bicinchoninic acid (BCA) method (Waffenschmidt &
Jaenicke, 1987). Briefly, 0.125% amylose V was incubated, with dif-
ferent GBEs, in 50mM sodium phosphate buffer, as described above.
Samples of 200 μL were taken at regular time intervals and the reaction
was stopped by boiling for 10min. Of the samples taken, 50 μL was
debranched by adding 1 μL of 0.1M HCl (which lowers the pH to 5.0),
0.7 U isoamylase, 0.5 U pullulanase and 5mM CaCl2, and incubating at
40 °C for 16 h. The hydrolytic activity was also quantified, by following
the increase in reducing ends within the reaction mixture in time.
Branching activity is simply the difference in the amount of reducing
ends after debranching minus the amount of reducing ends before
debranching. One unit of branching activity is defined as 1 μmol of
branches formed per minute (Palomo et al., 2011). The branching ac-
tivity of TtGBE57, TkGBE57 and PmGBE13 on amylose was calculated
from the increase in branches formed within the first 30min (10min for
RmGBE13), while the hydrolytic activity is calculated from the increase
in reducing ends over 24 h. The branching activity on amylopectin was
calculated from the increase in branches formed within the first 15min,
while the hydrolytic activity is calculated from the increase in reducing
ends over 24 h.

2.4. High performance anion exchange chromatography

Oligosaccharide analyses was carried out by High Performance
Anion Exchange Chromatography (HPAEC) on a Dionex ICS-3000
system (Thermo Fisher Scientific) equipped with a 4×250mm
CarboPac PA-1 column. A pulsed amperometric detector with a gold
electrode and an Ag/AgCl pH reference electrode was used. The system
was run with a gradient of 30–600mM NaAc in 100mM NaOH 1mL/
min. Chromatograms were analyzed using Chromeleon 6.8 chromato-
graphy data system software (Thermo Fisher Scientific, Waltham). A
mixture of glucose, maltose, maltotriose, maltotetraose, maltopentaose,
maltohexaose, and maltoheptaose was used as reference for qualitative
determination of elution time of each component.

The chain length distribution was determined by the debranching
the branched α-glucans (2mg/mL in 5mM sodium acetate buffer pH
5.0) with 0.7 U/mL isoamylase and 0.5 U/mL pullulanase at 40 °C for
16 h. The debranching reactions were stopped by boiling for 5min, and
denatured proteins were removed by centrifugation, and analyzed by
HPAEC.

2.5. 1H-NMR spectroscopy

1H-NMR spectra were recorded at a probe temperature of 323 K on a
Varian Inova 500 spectrometer (NMR Center, University of Groningen).
Before analysis, samples were exchanged twice in D2O (99.9 atom% D,
Sigma-Aldrich Chemical) with intermediate lyophilization, and then
dissolved in 0.6 mL D2O. Spectra were processed using MestReNova 5.3
software (Mestrelabs Research SL, Santiago de Compostella, Spain),

Fig. 1. SDS-PAGE of TtGBE57 (Lane 1), TkGBE57 (Lane 2), RmGBE13 (Lane 3),
and PmGBE13 (Lane 4).
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using Whittaker Smoother baseline correction and zero filling to 32 k
complex points. Carbohydrate structures were determined using the
previously developed 1H-NMR structural-reporter-group concept of α-
D-glucans (van Leeuwen, Leeflang, Gerwig, & Kamerling, 2008). The α-
1,6-signal is presented at δ 4.98, originating from H1 in 1,4-α-glucose-
1,6, and α-1,4-signal is at δ 5.36 from the H1 in 1,4-α-glucose-1,4 and
1→4,6-α-glucose-1,4 residues. The degree of branching (α-1,6-linkage
ratio) was calculated by dividing the area of α-1,6-linkage peak by the
total area of α-1,4-linkage and α-1,6-linkage peaks in the NMR spectra.

2.6. GPC-SEC

Molecular weight distributions were measured by GPC-SEC run with
DMSO-LiBr. DMSO-LiBr (0.05M) was prepared by stirring for 3 h at
room temperature. Samples were dissolved at a concentration of 2mg/
mL in DMSO-LiBr at 80 °C for 3 h with shaking and then filtered through
a 0.45 μm Millex PTFE membrane (Millipore Corporation, Billerica,
USA). The Size Exclusion Chromatography (SEC) system setup (Agilent
Technologies 1260 Infinity) from PSS (Mainz, Germany) consisted of an
isocratic pump, auto sampler without temperature regulation, an online
degasser, an inline 0.2 μm filter, a refractive index detector (G1362 A
1260 RID Agilent Technologies, Santa Clara), viscometer (ETA-2010
PSS, Mainz, Germany), and MALLS (SLD 7000 PSS, Mainz, Germany).
WinGPC Unity software (PSS) was used for data processing. The sam-
ples were injected with a flow rate of 0.5mL/min into a PFG guard-
column and three PFG SEC columns 100, 300 and 4000 (PSS). The
columns were held at 80 °C, and the detectors were held at 60 °C (Visco)

and 45 °C (RI). A standard pullulan kit (PSS) with molecular weights
from 342 to 805,000 Da was used to generate a universal calibration
curve, in order to determine the hydrodynamic volume from the elution
volume. The specific RI increment value dn/dc was measured by PSS
and is 0.072.

2.7. Fractionation of branched α-glucans

The branched α-glucans obtained from amylose by TtGBE57 mod-
ification were separated into a high and low molecular weight fractions
using size-exclusion chromatography (Hiprep 26/60 Sephacryl S-500 h
column). Briefly, 25mg branched α-glucan in 5mL was injected, and
the column was run at 2.5mL/min water with 0.02% NaN3. The col-
lected fractions were freeze dried, and subsequently analyzed by NMR
and GPC-SEC, as described above.

2.8. Modification of different amylose content substrates

The mixtures of amylose and amylopectin were prepared by com-
bining solutions of amylose V and waxy potato starch at different ratios.
Firstly, 5 mg/mL amylose V was dissolved into 1M NaOH, and then
neutralized to pH 7.0. Waxy potato starch (7.5 mg/mL) was dissolved in
50mM phosphate buffer with pH 7 by boiling. The enzymatic reaction
conditions were as above. The reactions were stopped by boiling for
10min, the denatured proteins removed by centrifugation, and the
supernatant dialyzed using a dialysis tube with a cutoff size of
100–500 Da. The samples were freeze dry and analyzed, as described

Table 1
The branching and hydrolytic activities of GBEs.

Amylose as substrate Amylopectin as substrate

GBEs Branching activity (mU/mg) Hydrolytic
activity
(mU/mg)

Branching/
Hydrolytic

Branching activity (mU/mg) Hydrolytic
activity
(mU/mg)

Branching/
Hydrolytic

TtGBE57 490 1.7 288 380 2.9 131
TkGBE57 560 2.6 215 450 4.3 105
PmGBE13 6,100 7.5 813 8,800 4.2 2095
RmGBE13 18,700 7.1 2,634 7,500 3.3 2272

Fig. 2. Branching and hydrolysis reaction pro-
gress.
Reaction progress is followed by quantifying
the increase in reducing ends over time in the
conversion of amylose V. TtGBE57 (A);
TkGBE57 (B); RmGBE13 (C) and PmGBE13 (D).
Black dot: the reducing end concentration of
the reaction contents; Black square: the redu-
cing end concentration increase upon deb-
ranching.
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above.

3. Results and discussion

3.1. Branching and hydrolytic activity of glycogen branching enzymes

Two GH57 gbe genes, from T. thermophilus and T. kodakarensis, and
two GH13 gbe genes, from R. marinus and P. mobilis, were overexpressed
in E. coli and the corresponding GBEs were purified by a combination of
heat treatment and His-tag affinity chromatography (Fig. 1). The two
GH13 GBEs have a considerable higher branching activity than the two
GH57 GBEs, using amylose V and amylopectin as substrates (Table 1).
The two GH57 GBEs have a slightly higher branching activity on
amylose, the RmGBE13 shows 40% more branching activity with
amylopectin, and PmGBE13 has two times more branching activity on
amylose.

In addition to the branching activity, GBEs also possess a low hy-
drolytic activity, which results in the formation of oligo and poly-
saccharides smaller than the substrate. Acting on amylose V, both GH57
GBEs have a considerably lower ratio of branching over hydrolytic
activity than the two GH13 GBEs (Table 1), which is in agreement with
previous publications (Palomo et al., 2009, 2011). Indeed, upon pro-
longed incubation of amylose V with the two GH57 GBEs, about 15% of
the catalytic actions had resulted in the formation of a new reducing
end (hydrolysis activity), and 85% in the formation of a new branch
(branching activity) (Fig. 2). The two GH57 GBEs are even more hy-
drolytic with amylopectin as substrate, with 40% hydrolysis and 60%
branching (Supplementary Fig. S1). The two GH13 GBEs, in contrast,
formed almost only branches, with both amylose and amylopectin
(Fig. 2 and Supplementary Fig. S1). Indeed, HPAEC analysis shows

substantial amounts of short oligosaccharides in the products made by
the two GH57 GBEs (Fig. 3), which are basically absent in the products
made by the two GH13 GBEs. Thus, the two GH57 GBEs are far more
hydrolytic than two GH13 GBEs, when acting in-vitro on pre-existing α-
glucan polymers. Although out of scope for this publication, it remains
an intriguing question whether GH57 GBEs are also relative hydrolytic
in-vivo.

3.2. The structure of branched α-glucan made by GBEs is influenced by the
amylose to amylopectin ratio

As native starches are composed of amylopectin and amylose, with
the amylose content ranging from as low as 0 up to 70% in commer-
cially available starches (Jane et al., 1999), it was explored if the
amylopectin to amylose ratio affects the structure of the branched α-
glucan synthesized. Therefor various ratios of amylose and amylopectin
were incubated with the four GBEs and the obtained products were
analyzed in detail. Firstly, the chain length distribution of the branched
α-glucans derived from 100% amylose and 100% amylopectin were
compared. This revealed that the two GH57 GBEs form products with a
wider chain length distribution. While the products of the two GH13
GBEs are particular rich in chains up to ˜DP 10, the two GH57 GBE
products contain clearly more relative long chains of DP 10 to 15
(Figs. 3 & 4 ). The two GH57 GBE products derived from amylopectin
even show a bimodal patter, with maxima at DP7 and DP11 (Fig. 4).
Although the products of the two thermophilic GH13 GBEs explored
here have very similar chain length distribution, not all GH13 GBEs
synthesize similar products. For examples, the potato SBEI and SBEII
GH13 branching enzymes form branched α-glucans with distinct chain
length distributions (Rydberg, Andersson, Andersson, Aman, & Larsson,

Fig. 3. Chain length distribution of the branched α-glucans derived from amylose V. TtGBE57 (A), TkGBE57 (B), RmGBE13 (C) and PmGBE13 (D). The branched α-
glucans were debranched by isoamylase/pullulanase and analyzed by HPAEC-PAD.
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2001).
Subsequently the degree of branching of all samples was de-

termined, demonstrating that the two GH13 GBEs form products with a
higher degree of branching. Surprisingly, it was also observed that the
degree of branching is positively correlated with the percentage of
amylose in the substrate with the two GH57 GBEs (Fig. 5). The same
correlation is seen with the RmGBE13, although the effect is somewhat
milder, while the effect is absent with the PmGBE13 (Fig. 5). Since the
initial branching activity of the two GH57 GBEs with amylose and
amylopectin are quite similar (Table 1), the much higher degree of
branching reached with amylose indicates that the branches are

distributed more efficiently starting with amylose, compared to amy-
lopectin. However, a previous study reported that GBE formed slightly
less branched α-glucans with increasing amylose content of the sub-
strate (Sorndech et al., 2016). Sorndech et al. used high Mw (5500 kDa)
barley amylose and waxy maize amylopectin, while in the current study
potato amylose with a much lower Mw (100 kDa) was used. Possibly
branching enzymes are more effective with shorter substrates.

3.3. Branched α-glucans derived from amylose and amylopectin have
different molecular weight profiles

Besides the degree of branching and the chain length distributions
also the molecular weight (Mw) is a key structural parameter of bran-
ched α-glucans. To determine if the Mw is influenced by the amylose
content of the substrate the branched α-glucans derived from amylose
and amylopectin were analyzed by GPC. The first observation is that the
four GBEs synthesize branched α-glucans with distinct Mw distribu-
tions. Acting on amylose the two GH13 GBEs generate products with a
relative mono disperse Mw distribution (Fig. 6); ˜1×105 Da for
RmGBE13 and ˜2×105 Da for PmGBE13. The two GH57 GBEs sur-
prisingly generated products consisting of a low and a high Mw fraction
(Fig. 6). Separation of the high and low Mw fractions of the TtGBE57
product, using size-exclusion column chromatography, revealed that
the low Mw fraction (< 4×104 Da) contains only 5% branches and the
high Mw fraction (> 7×104 Da) contains 10% branches. This in-
dicates that the low Mw fraction consist mainly of the products re-
sulting from hydrolysis with mild branching, whereas the high Mw
fraction is the result of the branching reaction.

The picture is distinctively different with amylopectin as substrate.
The most remarkable difference being the lower Mw of the branched α-
glucans derived from amylopectin compared to the products derived

Fig. 4. Chain length distribution of the branched α-glucans derived from amylopectin. TtGBE57 (A), TkGBE57 (B), RmGBE13 (C) and PmGBE13 (D). The branched
glucans were debranched by isoamylase/pullulanase and analyzed by HPAEC-PAD.

Fig. 5. The correlation between amylose content of the substrates and degree of
branching. The amylose content was set by mixing amylose V and amylopectin,
both from potato.
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from amylose. Subsequently the mixtures of amylose and amylopectin
were converted by the four GBEs revealing that the average Mw in-
creases with increasing amylose content. The same phenomena has also
been observed for the GH13 GBE from Rhodothermus obamensis
(Sorndech et al., 2016), and now also in this study. From these ob-
servations it is concluded that GBEs convert the high Mw amylopectin
into branched α-glucans with lower Mw, whereas amylose is converted
into branched α-glucans with a Mw corresponding to that of amylose.
The Mw distributions of the branched α-glucans derived from amylose
and amylopectin show, however, also similarities. The GH13 RmGBE13
product is again rather mono disperse, whereas the two GH57 products
consist of two or three Mw fractions (Fig. 6). The GH13 PmGBE13
derived from amylopectin product is special in the sense that consist of
two Mw fractions, while the enzyme converts amylose in a mono dis-
perse branched α-glucan (Fig. 6). Thus, the different GBEs create highly
branched α-glucan with various Mw distributions, and the GH13
RmGBE13 is the best choice for the production of product with a

uniform Mw distribution.

3.4. Synthesis of branched α-glucans from a waxy starch and a high
amylose starch

The question arises if the trends seen with the artificial mixtures of
amylose and amylopectin also hold in the conversion of natural star-
ches, which vary widely in their amylose content, (Knutson & Grove,
1994; Morrison & Laignelet, 1983). To test this waxy corn and a high
amylose pea starch (with 35% amylose) (Jensen et al., 2013; Lourdin,
Della Valle, & Colonna, 1995) were treated with the GBEs. NMR ana-
lysis of the branched α-glucans obtained demonstrated that the degree
of branching of these products (Table 2) is in good agreement with the
values obtained with the artificial mixtures of amylose or amylopectin
(Fig. 5). Thus, the two GH13 GBEs synthesized branched α-glucans with
a higher degree of branching than the two GH57 GBEs (Table 2). And
secondly, the two GH57 GBEs create products with a higher degree of
branching from the amylose rich pea starch than from the waxy maize
starch, as predicted by the model system employing a mixture of
amylose and amylopectin.

4. Conclusions

Here we report the synthesis of branched α-glucans by four ther-
mophilic GBEs. Whereas amylose is converted in highly branched α-
glucans by all four GBEs, conversion of amylopectin yields highly
branched and modest branched products with the GH13 and GH57
GBEs, respectively. The two GH13 GBEs products have a narrow

Fig. 6. The molecular weight distribution of the branched α-glucans derived from amylose and amylopectin mixtures by TtGBE57 (A), TkGBE57 (B), RmGBE13 (C)
and PmGBE13 (D) treatment. The analysis was performed by GPC-MALLS-RI run with DMSO containing 50mM LiBr.

Table 2
The DB of pea and waxy corn starches following modifications with T. ther-
mophilus, T. kodakarensis, R. marinus, and P. mobilis GBEs. Based on the results
of triplicate analyses.

GH Family GBE Pea starch Waxy corn starch

57 TtGBE57 6.2 ± 0.44 5.3 ± 0.65
TkGBE57 6.2 ± 0.64 5.0 ± 0.21

13 RmGBE13 10.9 ± 0.20 10.2 ± 0.12
PmGBE13 13.1 ± 0.30 12.7 ± 0.49
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molecular weight distribution, while the two GH57 GBEs products have
a wide molecular weight distribution. We speculate that the production
of branched α-glucans with a narrow molecular weight distribution
requires GBEs with very low hydrolytic activity. Indeed, the commer-
cially available RmGBE13 (Branchzyme, Novozymes) has the highest
branching over hydrolysis specificity and synthesizes the branched α-
glucan with the most mono disperse molecular weight distribution of
the GBEs evaluated.
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