114 research outputs found

    COLECCIÓN GÜNTER KUNKEL [Material gráfico]

    Get PDF
    Copia digital. Madrid : Ministerio de Educación, Cultura y Deporte. Subdirección General de Coordinación Bibliotecaria, 201

    Original plant diversity and ecosystems of a small, remote oceanic island (Corvo, Azores): Implications for biodiversity conservation

    Get PDF
    Remote islands harbour many endemic species and unique ecosystems. They are also some of the world's most human-impacted systems. It is essential to understand how island species and ecosystems behaved prior to major anthropogenic disruption as a basis for their conservation. This research aims to reconstruct the original, pre-colonial biodiversity of a remote oceanic island to understand the scale of past extinctions, vegetation changes and biodiversity knowledge gaps. We studied fossil remains from the North Atlantic island of Corvo (Azores), including pollen, charcoal, plant macrofossils, diatoms and geochemistry of wetland sediments from the central crater of the island, Caldeirão. A comprehensive list of current vascular plant species was compiled, along with a translation table comparing fossilized pollen to plant species and a framework for identifying extinctions and misclassifications. Pollen and macrofossils provide evidence for eight local extinctions from the island's flora and show that four species listed as ‘introduced’ are native. Up to 23% of the pollen taxa represent extinct/misclassified species. Corvo's past environment was dynamic, shifting from glacial-era open vegetation to various Holocene forest communities, then almost completely deforested by fires, erosion and grazing following Portuguese colonisation. Historical human impacts explain high ecological turnover, several unrecorded extinctions and the present-day abundance of vegetation types like Sphagnum blanket mire. We use Corvo as a case study on how fossil inventories can address the Wallacean and Hookerian biodiversity knowledge gaps on remote islands. Accurate baselines allow stakeholders to make informed conservation decisions using limited financial and human resources, particularly on islands where profound anthropogenic disruption occurred before comprehensive ecological research

    Interconversion between active and inactive TATA-binding protein transcription complexes in the mouse genome

    Get PDF
    The TATA binding protein (TBP) plays a pivotal role in RNA polymerase II (Pol II) transcription through incorporation into the TFIID and B-TFIID complexes. The role of mammalian B-TFIID composed of TBP and B-TAF1 is poorly understood. Using a complementation system in genetically modified mouse cells where endogenous TBP can be conditionally inactivated and replaced by exogenous mutant TBP coupled to tandem affinity purification and mass spectrometry, we identify two TBP mutations, R188E and K243E, that disrupt the TBP–BTAF1 interaction and B-TFIID complex formation. Transcriptome and ChIP-seq analyses show that loss of B-TFIID does not generally alter gene expression or genomic distribution of TBP, but positively or negatively affects TBP and/or Pol II recruitment to a subset of promoters. We identify promoters where wild-type TBP assembles a partial inactive preinitiation complex comprising B-TFIID, TFIIB and Mediator complex, but lacking TFIID, TFIIE and Pol II. Exchange of B-TFIID in wild-type cells for TFIID in R188E and K243E mutant cells at these primed promoters completes preinitiation complex formation and recruits Pol II to activate their expression. We propose a novel regulatory mechanism involving formation of a partial preinitiation complex comprising B-TFIID that primes the promoter for productive preinitiation complex formation in mammalian cells
    corecore