2,191 research outputs found

    A macroscopic model for sessile droplet evaporation on a flat surface

    Get PDF
    The evaporation of sessile droplets on a flat surface involves a complex interplay between phase change, diffusion, advection and surface forces. In an attempt to significantly reduce the complexity of the problem and to make it manageable, we propose a simple model hinged on a surface free energy-based relaxation dynamics of the droplet shape, a diffusive evaporation model and a contact line pinning mechanism governed by a yield stress. Our model reproduces the known dynamics of droplet shape relaxation and of droplet evaporation, both in the absence and in the presence of contact line pinning. We show that shape relaxation during evaporation significantly affects the lifetime of a drop. We find that the dependence of the evaporation time on the initial contact angle is a function of the competition between the shape relaxation and evaporation, and is strongly affected by any contact line pinning.Comment: 13 pages, 8 figure

    Compound redistribution due to droplet evaporation on a thin polymeric film: theory

    Get PDF
    A thin polymeric film in contact with a fluid body may leach low-molecular-weight compounds into the fluid. If this fluid is a small droplet, the compound concentration within the liquid increases due to ongoing leaching in combination with the evaporation of the droplet. This may eventually lead to an inversion of the transport process and a redistribution of the compounds within the thin film. In order to gain an understanding of the compound redistribution, we apply a macroscopic model for the evaporation of a droplet and combine that with a diffusion model for the compound transport. In the model, material deposition and the resulting contact line pinning are associated with the precipitation of a fraction of the dissolved material. We find three power law regimes for the size of the deposit area as a function of the initial droplet size, dictated by the competition between evaporation, diffusion and the initial compound concentrations in the droplet and the thin film. The strength of the contact line pinning determines the deposition profile of the precipitate, characterised by a pronounced edge and a linearly decaying profile towards the centre of the stain. Our predictions for the concentration profile within the solid substrate resemble patterns found experimentally.Comment: 12 pages, 10 figure

    2D InP photonic crystal fabrication process development

    Full text link
    We have developed a reliable process to fabricate high quality 2D air-hole and dielectric column InP photonic crystals with a high aspect ratio on a STS production tool using ICP N2+Cl2 plasma. The photonic crystals have a triangular lattice with lattice constant of 400 nm and air-hole and dielectric column radius of 120 nm. Large efforts have been devoted on developing a proper mask. We obtained a perfect, clean and vertical profiled SiNx mask. The next main effort is InP pattern transfer in Cl 2+N2 plasma. Etching selectivity, smooth sidewall and etch profile are directly related to plasma process condition, besides the quality of SiNx mask. We have optimized the N2+Cl2 plasma condition to obtain high aspect ratio, vertical profile and smooth sidewall InP structures. Cylindrical holes (2 micron depth) and rodlike pillars (2.4 micron height) are uniformly fabricated. An aspect ratio of 18 for 100nm trench lines has been obtained. AFM measurement evidences that etched surfaces are smooth. The root mean square roughness of pillar and hole is 0.7 nm and 0.8 nm, respectively. The optical transmission characterization of ridge waveguides has been carried out. Transmission spectrum of 1 micron wide waveguide has been obtained

    Detection of the tulip breaking virus (TBV) in tulips using optical sensors

    Get PDF
    The tulip breaking virus (TBV) causes severe economic losses for countries that export tulips such as the Netherlands. Infected plants have to be removed from the field as soon as possible. There is an urgent need for a rapid and objective method of screening. In this study, four proximal optical sensing techniques for the detection of TBV in tulip plants were evaluated and compared with a visual assessment by crop experts as well as with an ELISA (enzyme immunoassay) analysis of the same plants. The optical sensor techniques used were an RGB color camera, a spectrophotometer measuring from 350 to 2500 nm, a spectral imaging camera covering a spectral range from 400 to 900 nm and a chlorophyll fluorescence imaging system that measures the photosynthetic activity. Linear discriminant classification was used to compare the results of these optical techniques and the visual assessment with the ELISA score. The spectral imaging system was the best optical technique and its error was only slightly larger than the visual assessment error. The experimental results appear to be promising, and they have led to further research to develop an autonomous robot for the detection and removal of diseased tulip plants in the open field. The application of this robot system will reduce the amount of insecticides and the considerable pressure on labor for selecting diseased plants by the crop expert. © 2010 The Author(s

    Non-destructive Assessment of Quality and Yield for Grass-Breeding

    Get PDF
    Selection of cultivars has, until now, been based mainly on dry matter (DM) yields because of the high costs of sampling and chemical analysis. Imaging spectroscopy could reduce costs by limiting sampling and harvesting of individual plots to reference samples (Schut et al., accepted). In this study, the prediction accuracy of DM yields and chemical composition with imaging spectroscopy is evaluated for cultivar selection purposes

    Photonic crystal slot nanobeam slow light waveguides for refractive index sensing

    No full text
    We present the design, fabrication, and photoluminescence experiment of InGaAsP photonic crystal slot nanobeam slow light waveguides with embedded InAs quantum dots. The strong confinement of electric field in the slot region is confirmed by the measured record high sensitivity of 7 x 10 (2) nm per refractive index unit RIU to the refractive index change of the environment. A cavity, formed by locally deflecting the two beams toward each other, gives an even higher sensitivity of about 9x10(2) nm/RIU.The authors acknowledge the support from the BrainBridge project ZJU-TU/e and Philips Research collaboration, AOARD, and the National Natural Science Foundation of China Grant No. 60907018

    InP-based two-dimensional photonic crystals filled with polymers

    Get PDF
    Polymer filling of the air holes of Indium Phosphide based two-dimensional photonic crystals is reported. After infiltration of the holes with a liquid monomer and solidification of the infill in situ by thermal polymerization, complete filling is proven using scanning electron microscopy. Optical transmission measurements of a filled photonic crystal structure exhibit a redshift of the air band, confirming the complete filling.Comment: To be published in Appl. Phys. Let

    InGaAsP photonic crystal slot nanobeam waveguides for refractive index sensing

    Get PDF
    Results are presented on the use of InGaAsP photonic crystal nanobeam slot waveguides for refractive index sensing. These sensors are read remote-optically through photoluminescence, which is generated by built-in InGaAs quantum dots. The nanobeams are designed to maximize the electromagnetic field intensity in the slot region, which resulted in record-high sensitivities in the order of 700 nm/RIU (refractive index unit). A cavity, created by locally deflecting the two beams towards each other through overetching, is shown to improve the sensitivity by about 20%

    A personalised screening strategy for diabetic retinopathy:a cost-effectiveness perspective

    Get PDF
    Aims/hypothesis: In this study we examined the cost-effectiveness of three different screening strategies for diabetic retinopathy: using a personalised adaptive model, annual screening (fixed intervals), and the current Dutch guideline (stratified based on previous retinopathy grade). Methods: For each individual, optimal diabetic retinopathy screening intervals were determined, using a validated risk prediction model. Observational data (1998–2017) from the Hoorn Diabetes Care System cohort of people with type 2 diabetes were used (n = 5514). The missing values of retinopathy grades were imputed using two scenarios of slow and fast sight-threatening retinopathy (STR) progression. By comparing the model-based screening intervals to observed time to develop STR, the number of delayed STR diagnoses was determined. Costs were calculated using the healthcare perspective and the societal perspective. Finally, outcomes and costs were compared for the different screening strategies. Results: For the fast STR progression scenario, personalised screening resulted in 11.6% more delayed STR diagnoses and €11.4 less costs per patient compared to annual screening from a healthcare perspective. The personalised screening model performed better in terms of timely diagnosis of STR (8.8% less delayed STR diagnosis) but it was slightly more expensive (€1.8 per patient from a healthcare perspective) than the Dutch guideline strategy. Conclusions/interpretation: The personalised diabetic retinopathy screening model is more cost-effective than the Dutch guideline screening strategy. Although the personalised screening strategy was less effective, in terms of timely diagnosis of STR patients, than annual screening, the number of delayed STR diagnoses is low and the cost saving is considerable. With around one million people with type 2 diabetes in the Netherlands, implementing this personalised model could save €11.4 million per year compared with annual screening, at the cost of 658 delayed STR diagnoses with a maximum delayed time to diagnosis of 48 months. Graphical abstract: [Figure not available: see fulltext.]

    Cytoplasmic Compartmentalization of the Fetal piRNA Pathway in Mice

    Get PDF
    Derepression of transposable elements (TEs) in the course of epigenetic reprogramming of the mouse embryonic germline necessitates the existence of a robust defense that is comprised of PIWI/piRNA pathway and de novo DNA methylation machinery. To gain further insight into biogenesis and function of piRNAs, we studied the intracellular localization of piRNA pathway components and used the combination of genetic, molecular, and cell biological approaches to examine the performance of the piRNA pathway in germ cells of mice lacking Maelstrom (MAEL), an evolutionarily conserved protein implicated in transposon silencing in fruit flies and mice. Here we show that principal components of the fetal piRNA pathway, MILI and MIWI2 proteins, localize to two distinct types of germinal cytoplasmic granules and exhibit differential association with components of the mRNA degradation/translational repression machinery. The first type of granules, pi-bodies, contains the MILI-TDRD1 module of the piRNA pathway and is likely equivalent to the enigmatic “cementing material” first described in electron micrographs of rat gonocytes over 35 years ago. The second type of granules, piP-bodies, harbors the MIWI2-TDRD9-MAEL module of the piRNA pathway and signature components of P-bodies, GW182, DCP1a, DDX6/p54, and XRN1 proteins. piP-bodies are found predominantly in the proximity of pi-bodies and the two frequently share mouse VASA homolog (MVH) protein, an RNA helicase. In Mael-mutant gonocytes, MIWI2, TDRD9, and MVH are lost from piP-bodies, whereas no effects on pi-body composition are observed. Further analysis revealed that MAEL appears to specifically facilitate MIWI2-dependent aspects of the piRNA pathway including biogenesis of secondary piRNAs, de novo DNA methylation, and efficient downregulation of TEs. Cumulatively, our data reveal elaborate cytoplasmic compartmentalization of the fetal piRNA pathway that relies on MAEL function
    corecore