676 research outputs found

    Defect-unbinding and the Bose-glass transition in layered superconductors

    Full text link
    The low-field Bose-glass transition temperature in heavy-ion irradiated Bi_2Sr_2CaCu_2O_8+d increases progressively with increasing density of irradiation-induced columnar defects, but saturates for densities in excess of 1.5 x10^9 cm^-2. The maximum Bose-glass temperature corresponds to that above which diffusion of two-dimensional pancake vortices between different vortex lines becomes possible, and above which the ``line-like'' character of vortices is lost. We develop a description of the Bose-glass line that is in excellent quantitative agreement with the experimental line obtained for widely different values of track density and material parameters.Comment: 4 pages, 4 figures, submitted to Phys. Rev. Let

    First order phase transition from the vortex liquid to an amorphous solid

    Full text link
    We present a systematic study of the topology of the vortex solid phase in superconducting Bi2_{2}Sr2_{2}CaCu2_{2}O8_{8} samples with low doses of columnar defects. A new state of vortex matter imposed by the presence of geometrical contours associated with the random distribution of columns is found. The results show that the first order liquid-solid transition in this vortex matter does not require a structural symmetry change.Comment: 4 pages, 5 figure

    The BAPRAS screening tool for reimbursement in a postbariatric population

    Get PDF
    Introduction: Reimbursement of body-contouring surgery (BCS) is a worldwide problem: there is no objective instrument to decide which postbariatric patients should qualify for reimbursement. The British Association of Plastic, Reconstructive and Aesthetic Surgeons (BAPRAS) has developed a screening tool for this purpose. In this study, we used a modified version of this screening tool in a postbariatric population and describe which patients would qualify for reimbursement using this tool. Methods: In this cross-sectional study postbariatric patients were asked to fill in an online questionnaire based on the BAPRAS screening tool with questions regarding complaints of overhanging skin and medical history. Weight loss data were extracted from a prospective database. The BODY-Q was added to assess patient-reported outcomes. Results: Patients who wanted to undergo BCS (n = 90) had higher screening tool scores and lower BODY-Q scores compared to patients who did not want BCS (n = 24). In total, 25 patients (26%) qualified for reimbursement, these patients had higher weight loss (33.5% versus 29.2%, p = 0.008), lower BMI (27.3 kg/m2 versus 30.4 kg/m2, p = 0.014) and more medical (4.0 versus 2.0, p = 0.004) and psychological complaints (88% versus 61%, p = 0.009). There was a significant, negative correlation between the screening tool scores and almost all BODY-Q scales. Conclusions: Patients with a desire for BCS have more complaints of excess skin, which negatively impacts their well-being. With the modified BAPRAS screening tool, patients with the best weight (loss) and most medical and psychological complaints of excess skin qualified for referral and reimbursement of BCS

    Vortex Solid-Liquid Transition in Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} with a High Density of Strong Pins

    Full text link
    The introduction of a large density of columnar defects in %underdoped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} crystals does not, at sufficiently low vortex densities, increase the irreversibility line beyond the first order transition (FOT) field of pristine crystals. At such low fields, the flux line wandering length rwr_{w} behaves as in pristine %Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} crystals. Next, vortex positional correlations along the cc--axis in the vortex Bose glass at fields above the FOT are smaller than in the low--field vortex solid. Third, the Bose-glass-to-vortex liquid transition is signaled by a rapid decrease in c-axis phase correlations. These observations are understood in terms of the ``discrete superconductor'' model.Comment: 4 pages, 4 figures Submitted to Phys. Rev. B Rapid Comm. 16-1-2004 Revised version 18-3-200

    Supercooling of the disordered vortex lattice in Bi_2Sr_2CaCu_2O_8+d

    Full text link
    Time-resolved local induction measurements near to the vortex lattice order-disorder transition in optimally doped Bi2_{2}Sr2_{2}CaCu2_{2}O8+δ_{8+\delta} single crystals shows that the high-field, disordered phase can be quenched to fields as low as half the transition field. Over an important range of fields, the electrodynamical behavior of the vortex system is governed by the co-existence of the two phases in the sample. We interpret the results in terms of supercooling of the high-field phase and the possible first order nature of the order-disorder transition at the ``second peak''.Comment: 4 pages, 3 figures. Submitted to Nature, July 10th, 1999; Rejected August 8th for lack of broad interest Submitted to Physical Review Letters September 10th, 199

    Flux pinning in (1111) iron-pnictide superconducting crystals

    Get PDF
    Local magnetic measurements are used to quantitatively characterize heterogeneity and flux line pinning in PrFeAsO_1-y and NdFeAs(O,F) superconducting single crystals. In spite of spatial fluctuations of the critical current density on the macroscopic scale, it is shown that the major contribution comes from collective pinning of vortex lines by microscopic defects by the mean-free path fluctuation mechanism. The defect density extracted from experiment corresponds to the dopant atom density, which means that dopant atoms play an important role both in vortex pinning and in quasiparticle scattering. In the studied underdoped PrFeAsO_1-y and NdFeAs(O,F) crystals, there is a background of strong pinning, which we attribute to spatial variations of the dopant atom density on the scale of a few dozen to one hundred nm. These variations do not go beyond 5% - we therefore do not find any evidence for coexistence of the superconducting and the antiferromagnetic phase. The critical current density in sub-T fields is characterized by the presence of a peak effect, the location of which in the (B,T)-plane is consistent with an order-disorder transition of the vortex lattice.Comment: 12 pages, submitted to Phys Rev.

    Thermal Suppression of Strong Pinning

    Full text link
    We study vortex pinning in layered type-II superconductors in the presence of uncorrelated disorder for decoupled layers. Introducing the new concept of variable-range thermal smoothing, we describe the interplay between strong pinning and thermal fluctuations. We discuss the appearance and analyze the evolution in temperature of two distinct non-linear features in the current-voltage characteristics. We show how the combination of layering and electromagnetic interactions leads to a sharp jump in the critical current for the onset of glassy response as a function of temperature.Comment: LaTeX 2.09, 4 pages, 2 figures, submitted to Phys. Rev. Let

    Suppression of surface barrier in superconductors by columnar defects

    Full text link
    We investigate the influence of columnar defects in layered superconductors on the thermally activated penetration of pancake vortices through the surface barrier. Columnar defects, located near the surface, facilitate penetration of vortices through the surface barrier, by creating ``weak spots'', through which pancakes can penetrate into the superconductor. Penetration of a pancake mediated by an isolated column, located near the surface, is a two-stage process involving hopping from the surface to the column and the detachment from the column into the bulk; each stage is controlled by its own activation barrier. The resulting effective energy is equal to the maximum of those two barriers. For a given external field there exists an optimum location of the column for which the barriers for the both processes are equal and the reduction of the effective penetration barrier is maximal. At high fields the effective penetration field is approximately two times smaller than in unirradiated samples. We also estimate the suppression of the effective penetration field by column clusters. This mechanism provides further reduction of the penetration field at low temperatures.Comment: 8 pages, 9 figures, submitted to Phys. Rev.

    Mesoscopic Superconducting Disc with Short-Range Columnar Defects

    Full text link
    Short-range columnar defects essentially influence the magnetic properties of a mesoscopic superconducting disc.They help the penetration of vortices into the sample, thereby decrease the sample magnetization and reduce the upper critical field. Even the presence of weak defects split a giant vortex state (usually appearing in a clean disc in the vicinity of the transition to a normal state) into a number of vortices with smaller topological charges. In a disc with a sufficient number of strong enough defects vortices are always placed onto defects. The presence of defects lead to the appearance of additional magnetization jumps related to the redistribution of vortices which are already present on the defects and not to the penetration of new vortices.Comment: 14 pgs. RevTex, typos and figures corrected. Submitted to Phys. Rev.
    • …
    corecore