830 research outputs found

    Ultrasonic tracking of a sinking ball in a vibrated dense granular suspension

    Full text link
    Observing and understanding the movement of an intruder through opaque dense suspensions such as quicksand remains a practical and conceptual challenge. Here we use an ultrasonic probe to investigate the dynamics of a steel ball sinking in a 3D dense glass bead packing saturated by water. We show that the frictional model developed for dry granular media can be used to describe the ball motion induced by horizontal vibration. From this rheology we infer the static friction coefficient and effective viscosity that decrease when increasing the vibration intensity. Our main finding is that the vibration-induced reduction of the yield stress and increase of the sinking depth are presumably due to induced slipping at the grain contacts but without visible plastic rearrangements of grains, in contrast to dry granular packings. To explain these results, we propose a mechanism of acoustic lubrication that reduces the inter-particle friction and leads to a decrease of the yield stress. This scenario is different from the mechanism of liquefaction usually invoked in loosely packed quicksands where the vibration-induced compaction increases the pore pressure and decreases the confining pressure on the solid skeleton, thus reducing the granular resistance to external load.Comment: 9 pages and 5 figures, plus the supplemental information (1 page, 2 movies, 1 figure

    STOP TALKING! Inhibition of speech is affected by word frequency and dysfunctional impulsivity

    Get PDF
    Speaking is a complex natural behavior that most people master very well. Nevertheless, systematic investigation of the factors that affect adaptive control over speech production is relatively scarce. The present experiments quantified and compared inhibitory control over manual and verbal responses using the stop-signal paradigm. In tasks with only two response alternatives, verbal expressions were slower than manual responses, but the stopping latencies of hand and verbal actions were comparable. When engaged in a standard picture-naming task using a large set of pictures, verbal stopping latencies were considerably prolonged. Interestingly, stopping was slower for naming words that are less frequently used compared to words that are used more frequently. These results indicate that adaptive action control over speech production is affected by lexical processing. This notion is compatible with current theories on speech self-monitoring. Finally, stopping latencies varied with individual differences in impulsivity, indicating that specifically dysfunctional impulsivity, and not functional impulsivity, is associated with slower verbal stopping

    Regression sampling in statistical auditing

    Get PDF
    Auditing;Regression Analysis;accountancy

    Shock Waves in Weakly Compressed Granular Media

    Get PDF
    We experimentally probe nonlinear wave propagation in weakly compressed granular media, and observe a crossover from quasi-linear sound waves at low impact, to shock waves at high impact. We show that this crossover grows with the confining pressure P0P_0, whereas the shock wave speed is independent of P0P_0 --- two hallmarks of granular shocks predicted recently. The shocks exhibit powerlaw attenuation, which we model with a logarithmic law implying that local dissipation is weak. We show that elastic and potential energy balance in the leading part of the shocks.Comment: 7 pages, 8 figure

    Single-protein motion on microtubules and in cell membranes

    Get PDF
    Schmidt, C.F. [Promotor]Vies, S.M. van der [Promotor]Peterman, E.J.G. [Copromotor

    Towards Conceptual Clarification of Proactive Inhibitory Control: A Review

    Get PDF
    The aim of this selective review paper is to clarify potential confusion when referring to the term proactive inhibitory control. Illustrated by a concise overview of the literature, we propose defining reactive inhibition as the mechanism underlying stopping an action. On a stop trial, the stop signal initiates the stopping process that races against the ongoing action-related process that is triggered by the go signal. Whichever processes finishes first determines the behavioral outcome of the race. That is, stopping is either successful or unsuccessful in that trial. Conversely, we propose using the term proactive inhibition to explicitly indicate preparatory processes engaged to bias the outcome of the race between stopping and going. More specifically, these proactive processes include either pre-amping the reactive inhibition system (biasing the efficiency of the stopping process) or presetting the action system (biasing the efficiency of the go process). We believe that this distinction helps meaningful comparisons between various outcome measures of proactive inhibitory control that are reported in the literature and extends to experimental research paradigms other than the stop task
    corecore