104 research outputs found

    Subtraction computed tomography imaging to detect endoleaks after endovascular aneurysm sealing with sac anchoring

    Get PDF
    Background Early detection of small type I endoleaks after endovascular aneurysm sealing is mandatory because they can rapidly progress and lead to severe complications. Recognition of endoleaks can be challenging due to the appearances on computed tomography unique to endovascular aneurysm sealing. We aimed to validate the accuracy and added value of subtraction computed tomography imaging using a post-processing software algorithm to improve detection of endovascular aneurysm sealing-associated endoleaks on postoperative surveillance imaging. Methods The computed tomography scans of 17 patients (16 males; median age: 78, range: 72–84) who underwent a post-endovascular aneurysm sealing computed tomography including both non-contrast and arterial phase series were used to validate the post processing software algorithm. Subtraction images are produced after segmentation and alignment. Initial alignment of the stent segmentations is automatically performed by registering the geometric centers of the 3D coordinates of both computed tomography series. Accurate alignment is then performed by translation with an iterative closest point algorithm. Accuracy of alignment was determined by calculating the root mean square error between matched 3D coordinates of stent segmentations. Results The median root mean square error after initial center of gravity alignment was 0.62 mm (IQR: 0.55–0.80 mm), which improved to 0.53 mm (IQR: 0.47–0.69 mm) after the ICP alignment. Visual inspection showed good alignment and no manual adjustment was necessary. Conclusions The possible merit of subtraction computed tomography imaging for the detection of small endoleaks during surveillance after endovascular aneurysm sealing was illustrated. Alignment of different computed tomography phases using a software algorithm was very accurate. Further studies are needed to establish the exact role of this technique during surveillance after endovascular aneurysm sealing compared to less invasive techniques like contrast-enhanced ultrasound

    Repeatability, and Intra-Observer and Interobserver Agreement of Two Dimensional Perfusion Angiography in Patients with Chronic Limb Threatening Ischaemia

    Get PDF
    Objective. Two dimensional (2D) perfusion angiography is a method that provides quantitative foot perfusion information from standard digital subtraction angiography acquisitions. The aim of this study was to test the reliability of this method in patients with chronic limb threatening ischaemia (CLTI) by investigating repeatability, and intra-observer and interobserver agreement. Methods: Twenty patients with CLTI and a below the knee endovascular revascularisation were included in a prospective clinical study. Prior to treatment two perfusion angiography runs were acquired with a five minute interval without performing an intervention. In these recordings, regions of interest were selected and time density curves and perfusion parameters were determined. To investigate intra-observer agreement one observer performed five measurements on the same acquisition for each patient. To investigate interobserver agreement three observers performed measurements on the same acquisition for each patient. Results were presented in Bland-Altman plots and as the intraclass correlation coefficient per parameter. Results: Two patients were excluded from repeatability analyses because of major motion artefacts. Repeatability analyses of the 18 remaining patients showed excellent correlation for every parameter (> .96). Intra-observer and interobserver agreement for all 20 patients were excellent for all parameters (1.00). Conclusion: Repeatability and intra-observer and interobserver agreement of 2D perfusion angiography in patients with CLTI were found to be excellent. It is therefore a reliable tool when used according to the standardised methods described in this study

    Comparison of Contrast Enhanced Magnetic Resonance Angiography to Computed Tomography in Detecting Pulmonary Arteriovenous Malformations

    Get PDF
    BACKGROUND: Computed tomography (CT) is considered the imaging modality of choice to diagnose pulmonary arteriovenous malformations PAVMs. The drawback of this technique is that it requires ionizing radiation. Magnetic resonance (MR) imaging does not have the limitation, but little is known about the performance of MR compared to CT for the detection of PAVMs. The aim of this study is to investigate the sensitivity of contrast-enhanced MR angiography (CE-MRA) in the detection of PAVMs with feeding artery diameters (FAD) > 2 mm. METHODS: Patients with a grade 2 or 3 shunt on screening transthoracic contrast echocardiography (TTCE) were asked to participate. Included patients underwent chest CT and CE-MRA. CT was considered the reference standard. CT and CE-MRA scans were anonymized and assessed for the presence of PAVMs with FAD > 2 mm by one and two readers respectively. Data analysis was performed on per patient and per PAVM basis. RESULTS: Fifty-three patients were included. 105 PAVMs were detected on CT, 45 with a FAD ≥ 2 mm. In per patient analysis, sensitivity and specificity of CE-MRA were 92% and 97% respectively for reader 1 and 92% and 62% for reader 2. Negative and positive predictive value (NPV/PPV) were 93% and 96% for R1 and 90% and 67% for R2. In per PAVM analysis, sensitivity, specificity, NPV and PPV were 96%, 99%, 100% and 86% for R1 and 93%, 96%, 100% and 56% for R2, respectively. CONCLUSIONS: CE-MRA has excellent sensitivity and NPV for detection of PAVMs with FAD ≥ 2 mm and can therefore be used to detect these PAVMs. We are hopeful that future advancements in CE-MRA technology will reduce false positive rates and allow for more broad use of CE-MRA in PAVM diagnosis and management

    TRIM33 switches off Ifnb1 gene transcription during the late phase of macrophage activation

    Get PDF
    Despite its importance during viral or bacterial infections, transcriptional regulation of the interferon-β gene (Ifnb1) in activated macrophages is only partially understood. Here we report that TRIM33 deficiency results in high, sustained expression of Ifnb1 at late stages of toll-like receptor-mediated activation in macrophages but not in fibroblasts. In macrophages, TRIM33 is recruited by PU.1 to a conserved region, the Ifnb1 Control Element (ICE), located 15 kb upstream of the Ifnb1 transcription start site. ICE constitutively interacts with Ifnb1 through a TRIM33-independent chromatin loop. At late phases of lipopolysaccharide activation of macrophages, TRIM33 is bound to ICE, regulates Ifnb1 enhanceosome loading, controls Ifnb1 chromatin structure and represses Ifnb1 gene transcription by preventing recruitment of CBP/p300. These results characterize a previously unknown mechanism of macrophage-specific regulation of Ifnb1 transcription whereby TRIM33 is critical for Ifnb1 gene transcription shutdown

    Adhesion Forces and Coaggregation between Vaginal Staphylococci and Lactobacilli

    Get PDF
    Urogenital infections are the most common ailments afflicting women. They are treated with dated antimicrobials whose efficacy is diminishing. The process of infection involves pathogen adhesion and displacement of indigenous Lactobacillus crispatus and Lactobacillus jensenii. An alternative therapeutic approach to antimicrobial therapy is to reestablish lactobacilli in this microbiome through probiotic administration. We hypothesized that lactobacilli displaying strong adhesion forces with pathogens would facilitate coaggregation between the two strains, ultimately explaining the elimination of pathogens seen in vivo. Using atomic force microscopy, we found that adhesion forces between lactobacilli and three virulent toxic shock syndrome toxin 1-producing Staphylococcus aureus strains, were significantly stronger (2.2–6.4 nN) than between staphylococcal pairs (2.2–3.4 nN), especially for the probiotic Lactobacillus reuteri RC-14 (4.0–6.4 nN) after 120 s of bond-strengthening. Moreover, stronger adhesion forces resulted in significantly larger coaggregates. Adhesion between the bacteria occurred instantly upon contact and matured within one to two minutes, demonstrating the potential for rapid anti-pathogen effects using a probiotic. Coaggregation is one of the recognized mechanisms through which lactobacilli can exert their probiotic effects to create a hostile micro-environment around a pathogen. With antimicrobial options fading, it therewith becomes increasingly important to identify lactobacilli that bind strongly with pathogens

    Care after pancreatic resection according to an algorithm for early detection and minimally invasive management of pancreatic fistula versus current practice (PORSCH-trial):design and rationale of a nationwide stepped-wedge cluster-randomized trial

    Get PDF
    Background: Pancreatic resection is a major abdominal operation with 50% risk of postoperative complications. A common complication is pancreatic fistula, which may have severe clinical consequences such as postoperative bleeding, organ failure and death. The objective of this study is to investigate whether implementation of an algorithm for early detection and minimally invasive management of pancreatic fistula may improve outcomes after pancreatic resection. Methods: This is a nationwide stepped-wedge, cluster-randomized, superiority trial, designed in adherence to the Consolidated Standards of Reporting Trials (CONSORT) guidelines. During a period of 22 months, all Dutch centers performing pancreatic surgery will cross over in a randomized order from current practice to best practice according to the algorithm. This evidence-based and consensus-based algorithm will provide daily multilevel advice on the management of patients after pancreatic resection (i.e. indication for abdominal imaging, antibiotic treatment, percutaneous drainage and removal of abdominal drains). The algorithm is designed to aid early detection and minimally invasive step-up management of postoperative pancreatic fistula. Outcomes of current practice will be compared with outcomes after implementation of the algorithm. The primary outcome is a composite of major complications (i.e. post-pancreatectomy bleeding, new-onset organ failure and death) and will be measured in a sample size of at least 1600 patients undergoing pancreatic resection. Secondary endpoints include the individual components of the primary endpoint and other clinical outcomes, healthcare resource utilization and costs analysis. Follow up will be up to 90 days after pancreatic resection. Discussion: It is hypothesized that a structured nationwide implementation of a dedicated algorithm for early detection and minimally invasive step-up management of postoperative pancreatic fistula will reduce the risk of major complications and death after pancreatic resection, as compared to current practice. Trial registration: Netherlands Trial Register: NL 6671. Registered on 16 December 2017

    The Dutch chronic lower limb-threatening ischemia registry (THRILLER): A study protocol for popliteal and infrapopliteal endovascular interventions

    Get PDF
    INTRODUCTION: Chronic limb-threatening ischemia (CLTI) is the end stage of peripheral arterial disease (PAD) and is associated with high amputation rates, mortality and disease-related health care costs. In infrapopliteal arterial disease (IPAD), endovascular revascularization should be considered for the majority of anatomical and clinical subgroups of CLTI. However, a gap of high-quality evidence exists in this field. The aim of the Dutch Chronic Lower Limb-Threatening Ischemia Registry (THRILLER) is to collect real world data on popliteal and infrapopliteal endovascular interventions. METHODS: THRILLER is a clinician-driven, prospective, multicenter, observational registry including all consecutive patients that undergo a popliteal or infrapopliteal endovascular intervention in seven Dutch hospitals. We estimate that THRILLER will include 400-500 interventions annually. Standardized follow-up visits with wound monitoring, toe pressure measurement and duplex ultrasonography will be scheduled at 6-8 weeks and 12 months after the intervention. The independent primary endpoints are primary patency, limb salvage and amputation free survival. Patients must give informed consent before participation and will be included according to predefined reporting standards. A data log of patients who meet the inclusion criteria but are not included in the registry will be maintained. We intend to conduct the first interim analysis two years after the start of inclusion. The results will be published in a scientific journal. DISCUSSION: Despite innovations in medical therapy and revascularization techniques, patients with CLTI undergoing endovascular revascularization still have a moderate prognosis. Previous prospective cohort studies were hampered by small sample sizes or heterogeneous reporting. Randomized controlled trials (RCTs) have high costs, potential conflicts of interest and give a limited reflection of daily practice. THRILLER aims to provide the largest prospective well phenotyped up-to-date dataset on treatment outcomes in CLTI patients to answer multiple underexplored research questions regarding diagnostics, medication, patient selection, treatment strategies and post intervention follow-up

    Functional divergence in the role of N-linked glycosylation in smoothened signaling

    Get PDF
    The G protein-coupled receptor (GPCR) Smoothened (Smo) is the requisite signal transducer of the evolutionarily conserved Hedgehog (Hh) pathway. Although aspects of Smo signaling are conserved from Drosophila to vertebrates, significant differences have evolved. These include changes in its active sub-cellular localization, and the ability of vertebrate Smo to induce distinct G protein-dependent and independent signals in response to ligand. Whereas the canonical Smo signal to Gli transcriptional effectors occurs in a G protein-independent manner, its non-canonical signal employs Gαi. Whether vertebrate Smo can selectively bias its signal between these routes is not yet known. N-linked glycosylation is a post-translational modification that can influence GPCR trafficking, ligand responsiveness and signal output. Smo proteins in Drosophila and vertebrate systems harbor N-linked glycans, but their role in Smo signaling has not been established. Herein, we present a comprehensive analysis of Drosophila and murine Smo glycosylation that supports a functional divergence in the contribution of N-linked glycans to signaling. Of the seven predicted glycan acceptor sites in Drosophila Smo, one is essential. Loss of N-glycosylation at this site disrupted Smo trafficking and attenuated its signaling capability. In stark contrast, we found that all four predicted N-glycosylation sites on murine Smo were dispensable for proper trafficking, agonist binding and canonical signal induction. However, the under-glycosylated protein was compromised in its ability to induce a non-canonical signal through Gαi, providing for the first time evidence that Smo can bias its signal and that a post-translational modification can impact this process. As such, we postulate a profound shift in N-glycan function from affecting Smo ER exit in flies to influencing its signal output in mice
    • …
    corecore