57 research outputs found

    Evaluatie netwerken Amsterdam. Onderzoek naar netwerken rondom gecombineerde leefstijlinterventies in Amsterdam

    Get PDF
    Op verzoek van 1ste Lijn Amsterdam heeft Wageningen Universiteit (WUR) een evaluatieonderzoek gedaan naar de netwerken rondom gecombineerde leefstijlinterventies in Amsterdam. Het doel van het evaluatieonderzoek van de netwerken in Amsterdam was om inzicht te krijgen in de succes- en verbeterpunten van de netwerken, de doelen en beoogde resultaten van de netwerken, de resultaten die de netwerken boeken en factoren van belang voor het opbouwen van duurzame netwerken ofwel blijvende netwerkverbindingen

    From Cell Death to Metabolism:Holin-Antiholin Homologues with New Functions

    Get PDF
    Programmed cell death in bacteria is generally triggered by membrane proteins with functions analogous to those of bacteriophage holins: they disrupt the membrane potential, whereas antiholins antagonize this process. The holin-like class of proteins is present in all three domains of life, but their functions can be different, depending on the species. Using a series of biochemical and genetic approaches, in a recent article in mBio, Charbonnier et al. (mBio 8:e00976-17, 2017, https://doi.org/10.1128/mBio.00976-17) demonstrate that the antiholin homologue in Bacillus subtilis transports pyruvate and is regulated in an unconventional way by its substrate molecule. Here, we discuss the connection between cell death and metabolism in various bacteria carrying genes encoding these holin-antiholin analogues and place the recent study by Charbonnier et al. in an evolutionary context

    Diameters in preferential attachment models

    Get PDF
    In this paper, we investigate the diameter in preferential attachment (PA-) models, thus quantifying the statement that these models are small worlds. The models studied here are such that edges are attached to older vertices proportional to the degree plus a constant, i.e., we consider affine PA-models. There is a substantial amount of literature proving that, quite generally, PA-graphs possess power-law degree sequences with a power-law exponent \tau>2. We prove that the diameter of the PA-model is bounded above by a constant times \log{t}, where t is the size of the graph. When the power-law exponent \tau exceeds 3, then we prove that \log{t} is the right order, by proving a lower bound of this order, both for the diameter as well as for the typical distance. This shows that, for \tau>3, distances are of the order \log{t}. For \tau\in (2,3), we improve the upper bound to a constant times \log\log{t}, and prove a lower bound of the same order for the diameter. Unfortunately, this proof does not extend to typical distances. These results do show that the diameter is of order \log\log{t}. These bounds partially prove predictions by physicists that the typical distance in PA-graphs are similar to the ones in other scale-free random graphs, such as the configuration model and various inhomogeneous random graph models, where typical distances have been shown to be of order \log\log{t} when \tau\in (2,3), and of order \log{t} when \tau>3

    The structure of typical clusters in large sparse random configurations

    Get PDF
    The initial purpose of this work is to provide a probabilistic explanation of a recent result on a version of Smoluchowski's coagulation equations in which the number of aggregations is limited. The latter models the deterministic evolution of concentrations of particles in a medium where particles coalesce pairwise as time passes and each particle can only perform a given number of aggregations. Under appropriate assumptions, the concentrations of particles converge as time tends to infinity to some measure which bears a striking resemblance with the distribution of the total population of a Galton-Watson process started from two ancestors. Roughly speaking, the configuration model is a stochastic construction which aims at producing a typical graph on a set of vertices with pre-described degrees. Specifically, one attaches to each vertex a certain number of stubs, and then join pairwise the stubs uniformly at random to create edges between vertices. In this work, we use the configuration model as the stochastic counterpart of Smoluchowski's coagulation equations with limited aggregations. We establish a hydrodynamical type limit theorem for the empirical measure of the shapes of clusters in the configuration model when the number of vertices tends to \infty. The limit is given in terms of the distribution of a Galton-Watson process started with two ancestors

    Upper bounds for number of removed edges in the Erased Configuration Model

    Full text link
    Models for generating simple graphs are important in the study of real-world complex networks. A well established example of such a model is the erased configuration model, where each node receives a number of half-edges that are connected to half-edges of other nodes at random, and then self-loops are removed and multiple edges are concatenated to make the graph simple. Although asymptotic results for many properties of this model, such as the limiting degree distribution, are known, the exact speed of convergence in terms of the graph sizes remains an open question. We provide a first answer by analyzing the size dependence of the average number of removed edges in the erased configuration model. By combining known upper bounds with a Tauberian Theorem we obtain upper bounds for the number of removed edges, in terms of the size of the graph. Remarkably, when the degree distribution follows a power-law, we observe three scaling regimes, depending on the power law exponent. Our results provide a strong theoretical basis for evaluating finite-size effects in networks

    Math saves the forest

    Get PDF
    Wireless sensor networks are decentralised networks consisting of sensors that can detect events and transmit data to neighbouring sensors. Ideally, this data is eventually gathered in a central base station. Wireless sensor networks have many possible applications. For example, they can be used to detect gas leaks in houses or fires in a forest.\ud In this report, we study data gathering in wireless sensor networks with the objective of minimising the time to send event data to the base station. We focus on sensors with a limited cache and take into account both node and transmission failures. We present two cache strategies and analyse the performance of these strategies for specific networks. For the case without node failures we give the expected arrival time of event data at the base station for both a line and a 2D grid network. For the case with node failures we study the expected arrival time on two-dimensional networks through simulation, as well as the influence of the broadcast range
    corecore