
J Stat Phys (2010) 139: 72–107
DOI 10.1007/s10955-010-9921-z

Diameters in Preferential Attachment Models

Sander Dommers · Remco van der Hofstad ·
Gerard Hooghiemstra

Received: 20 March 2009 / Accepted: 6 January 2010 / Published online: 22 January 2010
© The Author(s) 2010. This article is published with open access at Springerlink.com

Abstract In this paper, we investigate the diameter in preferential attachment (PA-) models,
thus quantifying the statement that these models are small worlds. The models studied here
are such that edges are attached to older vertices proportional to the degree plus a constant,
i.e., we consider affine PA-models. There is a substantial amount of literature proving that,
quite generally, PA-graphs possess power-law degree sequences with a power-law exponent
τ > 2.

We prove that the diameter of the PA-model is bounded above by a constant times log t ,
where t is the size of the graph. When the power-law exponent τ exceeds 3, then we prove
that log t is the right order, by proving a lower bound of this order, both for the diameter
as well as for the typical distance. This shows that, for τ > 3, distances are of the order
log t . For τ ∈ (2,3), we improve the upper bound to a constant times log log t , and prove a
lower bound of the same order for the diameter. Unfortunately, this proof does not extend to
typical distances. These results do show that the diameter is of order log log t .

These bounds partially prove predictions by physicists that the typical distance in
PA-graphs are similar to the ones in other scale-free random graphs, such as the config-
uration model and various inhomogeneous random graph models, where typical distances
have been shown to be of order log log t when τ ∈ (2,3), and of order log t when τ > 3.
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1 Introduction

In the past decade, many examples have been found of real-world complex networks that are
small worlds and scale free. The small-world phenomenon states that distances in networks
are small. The scale-free phenomenon states that the degree sequences in these networks
satisfy a power law. See [3, 24, 33] for reviews on complex networks, and [5] for a more
expository account. Thus, these complex networks are not at all like classical random graphs
(see [4, 9, 29] and the references therein), particularly since the classical models do not have
power-law degrees. As a result, these empirical findings have ignited enormous research
on random graph models that do obey power-law degree sequences. See [17] for the most
general inhomogeneous random graph models, as well as a review of the models under
investigation. Extensive discussions of various scale-free random graph models are given in
[21, 25].

While these models have power-law degree sequences, they do not explain why many
complex networks are scale free. A possible explanation was given by Barabási and Albert
[6] by a phenomenon called preferential attachment (PA). Preferential attachment models
the growth of the network in such a way that new vertices are more likely to add their edges
to already present vertices having a high degree. For example, in a social network, a new-
comer is more likely to get to know a person who is socially active, and, therefore, already
has a high number of acquaintances (high degree). Interestingly, PA-models with so-called
affine PA rules have power-law degree sequences, and, therefore, preferential attachment
offers a convincing explanation why many real-world networks possess this property. There
is a large amount of literature studying such models. See e.g. [2, 10–13, 15, 16, 22] and the
references therein. The literature primarily focuses on three main questions. The first key
question for PA-models is to prove that such random graphs are indeed scale free [2, 10, 11,
15, 16, 22], by proving that their degree sequence indeed obeys a power law with a certain
power-law exponent τ > 2. The second key question for PA-models is their vulnerability,
for example to deliberate attack [11] or to the spread of a disease [7]. The third key ques-
tion for PA-models is to show that the resulting models are small worlds by investigating
the distances in them. See in particular [13] for a result on the diameter for a PA-model
with power-law exponent τ = 3. In non-rigorous work, it is often suggested that many of
the scale-free models, such as the configuration model, the inhomogeneous random graph
models in [17] and the PA-models, have similar properties for their distances. Distances in
the configuration model have been shown to depend on the number of finite moments of the
degree distribution. Similar results are true for the so-called rank-1 inhomogeneous random
graph (see e.g. [18, 19, 34, 40]). The natural question is, therefore, whether the same applies
to preferential attachment models. This is the main goal of the present paper, in which we
investigate the diameter of scale-free PA-models.

The remainder of this section is organized as follows. We first introduce the models
that we will investigate in this paper. Then we give the main results and conclude with a
discussion of universality in power-law random graphs.

In this paper, we investigate the diameter in some PA-models. The models that we inves-
tigate produce a graph sequence or graph process {Gm,δ(t)}, which, for fixed t ≥ 1 or t ≥ 2,
yields a graph with t vertices and mt edges for some given integer m ≥ 1. In the sequel,
we shall denote the vertices of Gm,δ(t) by 1(m), . . . , t (m). When m is clear from the context,
we will leave out the superscript and write [t] ≡ {1,2, . . . , t}. We shall consider three slight
variations of the PA-model, which we shall denote by models (a), (b) and (c), respectively.

(a) The first model is an extension of the Barabási-Albert model formulated rigorously in
[15]. We start with G1,δ(1) consisting of a single vertex with a single self-loop. We
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denote the degree of vertex i(1) at time t by Di(1) (t), where a self-loop increases the
degree by 2.

Then, for m = 1, and conditionally on G1,δ(t), the growth rule to obtain G1,δ(t +1) is
as follows. We add a single vertex (t +1)(1) having a single edge. This edge is connected
to a second end point, which is equal to (t + 1)(1) with probability proportional to 1 + δ,
and to a vertex i(1) ∈ G1,δ(t) with probability proportional to Di(1) (t)+ δ, where δ ≥ −1
is a parameter of the model. Thus,

P
(
(t + 1)(1) → i(1)

∣
∣G1,δ(t)

) =
⎧
⎨

⎩

1+δ
t (2+δ)+(1+δ)

, for i = t + 1,
D

i(1) (t)+δ

t (2+δ)+(1+δ)
, for i ∈ [t].

(1.1)

The model with integer m > 1, is defined in terms of the model for m = 1 as fol-
lows. We start with G1,δ′(mt), with δ′ = δ/m ≥ −1. Then we identify the vertices
1(1),2(1), . . . ,m(1) in G1,δ(mt) to be vertex 1(m) in Gm,δ(t), and for 1 < j ≤ t , the ver-
tices ((j − 1)m+ 1)(1), . . . , (jm)(1) in G1,δ′(mt) to be vertex j (m) in Gm,δ(t); in particu-
lar the degree Dj(m)(t) of vertex j (m) in Gm,δ(t) is equal to the sum of the degrees of the
vertices ((j − 1)m + 1)(1), . . . , (jm)(1) in G1,δ′(mt). This defines the model for integer
m ≥ 1. Observe that the range of δ is [−m,∞).

The resulting graph Gm,δ(t) has precisely mt edges and t vertices at time t , but is
not necessarily connected. For δ = 0 we obtain the original model studied in [15], and
further studied in [11–13]. The extension to δ 	= 0 is crucial in our setting, as we shall
explain in more detail below.

(b) The second model is identical to the one above, apart from the fact that no self-loops are
allowed for m = 1. We start again with the definition for m = 1. To prevent a self-loop
in the first step, we let G1,δ(1) undefined, and start from G1,δ(2), which is defined by the
vertices 1(1) and 2(1) joined together by 2 edges. Then, for t ≥ 2, we define, conditionally
on G1,δ(t), the growth rule to obtain G1,δ(t + 1) as follows. For δ ≥ −1,

P
(
(t + 1)(1) → i(1)

∣∣G1,δ(t)
) = Di(1) (t) + δ

t (2 + δ)
, for i ∈ [t]. (1.2)

The model with m > 1 is again defined in terms of the model for m = 1, in precisely the
same way as in model (a). This model is studied in detail in [25], and the model with
m = 1 corresponds to scale-free trees as studied in e.g. [14, 31, 32, 36].

(c) In the third model, and conditionally on Gm,δ(t), the end points of each of the m edges
of vertex t + 1, are chosen independently, and are equal to a vertex i(m) ∈ Gm,δ(t), with
probability proportionally to Di(m)(t) + δ, where δ ≥ −m. We start again from Gm,δ(2),
with the vertices 1(m) and 2(m) joined together by 2m,m ≥ 1, edges. Since the end point
of the edges are chosen independently we can give the definition of {Gm,δ(t)}t≥2, for
m ≥ 1, in one step. For 1 ≤ j ≤ m,

P
(
j th edge of (t + 1)(m) is connected to i(m)|Gm,δ(t)

) = Di(m)(t) + δ

t (2m + δ)
, for i ∈ [t].

(1.3)
In this model, as is the case in model (b), the graph Gm,δ(t) is a connected random graph
with precisely t vertices and mt edges. This model was studied in [23, 30].

Remark 1.1 In models (a) and (b) for m > 1, the choice of δ′ = δ/m is such that in the
resulting graph Gm,δ(t), where m vertices in G1(mt) are grouped together to a single vertex
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in Gm,δ(t), the end points of the added edges are chosen according to the degree plus the
constant δ.

Remark 1.2 For m = 1, the models (b) and (c) are the same. This fact will be used later on.

The growth rules in (1.1)–(1.3) are indeed such that vertices with high degree are more
likely to attract edges of new vertices. One would expect the models (a)–(c) to behave quite
similarly, as is known rigorously for the scale-free behavior, where the asymptotic degree
distribution is known to be equal in models (a)–(c). As it turns out, the affine PA mechanism
in (1.1)–(1.3) gives rise to power-law degree sequences. Indeed, in [23], it was proved that
for model (c), the degree sequence is close to a power law with exponent τ = 3 + δ/m. For
model (a) and δ = 0, this was proved in [15], while in [22], power-law degree sequences
for PA-models with affine PA mechanisms are proved in rather large generality. We see that,
by varying the parameters m ≥ 1, δ > −m, we can obtain any power-law exponent τ > 2,
which is the reason for introducing the parameter δ in (1.1)–(1.3). However, there is no
intrinsic reason for the affine PA mechanism. For results on PA-models in the non-affine
case, see e.g., [35, 38]. In general, such models do not produce power laws.

The goal in this paper is to study the diameter in the above models, as a first step towards
the study of distances in PA-models and the verification of the prediction that distances
behave similarly in various scale-free random models (see also Sect. 1.2 below). In the
following section, we describe our precise results.

1.1 Bounds on the Diameter in Preferential Attachment Models

In this section, we present the diameter results for the PA-models (a)–(c). The diameter of a
graph G is defined as

diam(G) = max
i,j∈G

{
distG(i, j)|distG(i, j) < ∞}

, (1.4)

where distG(i, j) denotes the graph distance between vertices i, j ∈ G. We prove that, for all
δ > −m, the diameter of Gm,δ(t) is bounded by a constant times log t . When δ = 0, we adapt
the argument in [13] to prove that the diameter is bounded from below by (1 − ε)

log t

log log t
. For

δ > 0, this lower bound is improved to a constant times log t , while, for δ < 0, we prove
that the diameter is bounded above and below by a constant times log log t . This establishes
a phase transition for the diameter of PA-models when δ changes sign. We now state the
precise results, which shall all hold for each of the models (a)–(c) simultaneously. In the
results below, for a sequence of events {At }t≥1, we write that At occurs with high probability
(whp) when limt→∞ P(At ) = 1.

Theorem 1.3 (A log t upper bound on the diameter) Fix m ≥ 1 and δ > −m. Then, there
exists a constant c1 = c1(m, δ) > 0 such that whp, the diameter of Gm,δ(t) is at most c1 log t .

When m = 1, so that the graphs are in fact trees, there is a sharper result proved by
Pittel [36], which, in particular, implies Theorem 1.3 for model (b). In this case, Pittel shows
that the height of the tree, which is equal to the maximal graph distance between vertex 1
and any of the other vertices, grows like 1+δ

γ (2+δ)
log t (1 + o(1)), where γ solves the equation

γ + (1 + δ)(1 + logγ ) = 0. (1.5)
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This proves that the diameter is at least as large, and suggests that the diameter has size
2(1+δ)

γ (2+δ)
log t (1 + o(1)). Scale-free trees have received substantial attention in the literature,

we refer to [14, 36] and the references therein. It is not hard to see that a similar result as
proved in [36] also follows for models (a) and (c). This is proved when δ = 0 in [14], where
it is shown that the diameter in model (a) has size γ −1 log t , where γ is the solution of (1.5)
when δ = 0. Thus, we see that the log t upper bound in Theorem 1.3 is sharp, at least for
m = 1.

It is not hard to extend the upper bound to m ≥ 2. In particular, for model (b), the upper
bound for m ≥ 2 immediately follows from the upper bound for m = 1. For models (a)
and (c), the extension is not as trivial, but the proof is fairly straightforward, and will be
omitted here. To see an implication of [36] for model (a), we note that Ct , the number of
connected components of G1,δ(t) in model (a), has distribution Ct = 1+ I2 +· · ·+ It , where
Ii is the indicator that the ith edge connects to itself, so that {Ii}t

i=2 are independent indicator
variables with

P(Ii = 1) = 1 + δ

(2 + δ)(i − 1) + 1 + δ
. (1.6)

As a result, Ct/ log t converges in probability to (1+δ)/(2+δ) < 1, so that whp there exists
a largest connected component of size at least t/ log t . Conditionally on having size st , the
law of any connected component in model (a) is equal in distribution to the law of the
graph G1,δ(st + 1) in model (b), apart from the fact that the vertices 1 and 2 in G1,δ(st + 1)

are identified (thus creating a double self-loop) and the vertices are relabeled by order of
appearance. In particular, conditionally on having size st , the law of the diameter of the
connected component in model (a) equals that of G1,δ(st + 1) in model (b). This close
connection between the two models allows one to transfer results for model (b) to model (a)
when m = 1.

Theorem 1.4 (A log t lower bound on the diameter for δ > 0) Fix m ≥ 1 and δ > 0. Then,
there exists c2 = c2(m, δ) > 0, such that whp, the diameter of Gm,δ(t) is at least c2 log t .

Theorems 1.3–1.4 imply that, for δ > 0 and whp, diam(Gm,δ(t)) = �(log t). Theo-
rems 1.3–1.4 indicate that distances in PA-models are similar to the ones in other scale-free
models for τ > 3. We shall discuss this analogy in more detail below. As we shall see in
Sect. 2.2, the proof of Theorem 1.4 also reveals that, whp, the typical distance in Gm,δ(t),
which is the distance between two uniformly chosen connected vertices in the graph, is
bounded from below by c2 log t .

We conjecture that, for δ > 0, a limit result holds for the constant in front of the log t .
In its statement, we write distG(v1, v2) for the graph distance in the graph G between two
vertices v1, v2 ∈ [t]. Then, the typical distance in a graph G is defined by distG(V1,V2)

where V1,V2 ∈ [t] are two uniformly chosen independent vertices.

Conjecture 1.5 (Convergence in probability for δ > 0) Fix m ≥ 1 and δ > 0. Then, the di-
ameter diam(Gm,δ(t))/ log t and the typical distance distG(V1,V2)/ log t converge in prob-
ability to positive and different constants.

We now turn to the case where δ ∈ (−m,0) and hence τ = 3 + δ/m ∈ (2,3):
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Theorem 1.6 (A log log t upper bound on the diameter for δ < 0) Fix m ≥ 2 and assume
that δ ∈ (−m,0). Then, for every σ > 1/(3 − τ) and with

CG = 4

|log(τ − 2)| + 4σ

logm
, (1.7)

the diameter of Gm,δ(t) is, whp, bounded above by CG log log t , as t → ∞.

In this result, we do not obtain a sharp result in terms of the constant. However, the proof
suggests that for most pairs of vertices the distance should be equal to 4

|log(τ−2)| log log t(1 +
o(1)). When m = 1, Theorem 1.6 does not hold (see the discussion below Theorem 1.3).

We next discuss the lower bound on the diameter for δ ∈ (−m,0):

Theorem 1.7 (A log log t lower bound on the diameter) Fix m ≥ 2 and δ > −m. Then, the
diameter of Gm,δ(t) is, whp, bounded below by ε

logm
log log t , for all ε ∈ (0,1).

Unfortunately, the proof of Theorem 1.7 does not allow for an extension to typical dis-
tances, and, thus, we have no matching lower bound for this. We finally conjecture that, for
δ ∈ (−m,0), a limit results holds for the constant in front of the log log t :

Conjecture 1.8 (Convergence in probability for δ < 0) Fix m ≥ 2 and δ ∈ (m,0). Then, the
diameter diam(Gm,δ(t))/ log log t and the typical distance distG(V1,V2)/ log log t converge
in probability to positive and different constants.

1.2 Discussion of Universality of Distances in Power-Law Random Graphs

Theorems 1.3–1.7 prove that the diameter in PA-models with a power-law degree sequence
denoted by τ undergoes a phase transition as τ changes from τ ∈ (2,3) to τ > 3. The
results identify the order of growth of the diameter of three related models of affine PA
models as the size of the graph t tends to infinity. We do not obtain the right constants. For
the typical distance, we obtain a similar phase transition, and again the results identify the
correct asymptotics for τ > 3, but, for τ ∈ (2,3) we miss a matching lower bound.

In non-rigorous work, it is often suggested that the distances are similarly behaved in
the various scale-free random graph models, such as the configuration model or various
models with conditional independence of edges as in [17]. For power-law random graphs,
this informal statement can be made precise by conjecturing that distances have the same
leading order growth in graphs with the same power-law degree exponent. This, however, is
not correct for the diameter of such power-law random graphs, since the diameter depends
sensitively on the details of the graph, such as the proportion of vertices with degrees 1 and 2.
See [27] and [44] for results showing that for the configuration model with power-law degree
exponent τ ∈ (2,3), the diameter can be of order log t or of order log log t depending on the
proportion of vertices with degrees 1 and 2, where t is the size of the graph. Similarly, in
inhomogeneous random graphs with power-law degree exponent τ ∈ (2,3) the diameter is
always of order log t (see e.g. [17]), while the typical distances can be of order log log t (see
e.g. [18, 19]). Thus, we shall interpret the physicists’ prediction by conjecturing that the
leading order growth of the typical distances of various power-law random graphs depends
only on the power-law degree exponent τ ∈ (2,3).

The results on distances are most complete for the configuration model (CM), see e.g.
[27, 37, 39, 42, 43]. In the CM, there are various cases depending on the tails of the de-
gree distribution. When the degrees have infinite mean, then typical distances are bounded
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[39], when the degrees have finite mean but infinite variance, typical distances grow pro-
portionally to log log t [37, 43], where t is the size of the graph, while, for finite variance
degrees, the typical distances grow proportionally to log t [42]. Similar results for models
with conditionally independent edges exist, see e.g. [17, 18, 34, 40], but particularly in the
regime τ ∈ (2,3), the results are not that strong. Thus, for these classes of models, distances
are quite well understood. If the distances in PA-models are similar to the ones in e.g. the
CM, then we should have that the distances are of order log t when τ > 3, i.e., δ > 0, while
they should be of order log log t when τ ∈ (2,3), i.e., for δ < 0. In PA-models with a lin-
ear growth of the number of edges, infinite mean degrees cannot arise, which explains why
τ > 2 for PA-models. An attempt in the direction of creating PA-models with power-law ex-
ponent τ ∈ (1,2) can be found in [23], where a preferential attachment model is presented
in which a random number of edges per new vertex is added. In this model, it is shown that
the degrees again obey a power law with exponent equal to τ = min{3 + δ

μ
, τw}, where τw is

the power-law exponent for the number of edges added and μ ≤ ∞ the expected number of
added edges per vertex. Thus, when τw ∈ (1,2), infinite mean degrees can arise. This model
is further studied in [8], where a wealth of results for various PA-models can be found.

There are few results on distances in PA-models. In [13], it was proved that in model
(a) and for δ = 0, for which τ = 3, the diameter of the graph of size t is equal to

log t

log log t
(1 + o(1)). Unfortunately, the matching result for the CM has not been proved, so that

this does not allow us to verify whether the models have similar distances. The results stated
above substantiate the physicists’ prediction, since, for δ > 0 for which τ ∈ (3,∞), the typ-
ical distances are of order log t , while, for δ < 0, for which τ ∈ (2,3), they are bounded
above by log log t . A related result on PA-models in the spirit of [22] can be found in [20],
where a similar phase transition as in this paper is proved, in the case where the number of
edges grows at least (log t)1+ε times as fast as the number of vertices.

It would be of interest to improve the bounds presented in this paper up to the constant in
front of the log t and log log t , respectively. Due to the dynamical nature of PA-models, this is
more involved for PA-models than it is for static models such as the CM and inhomogeneous
random graphs.

This paper is organized as follows. In Sect. 2, we prove the log t lower bound for the
diameter stated in Theorem 1.4. In Sects. 3 and 4, we prove the log log t upper bound and
the log log t lower bound, on the diameter for δ < 0, of Theorems 1.6 and 1.7, respectively.

2 A log Lower Bound on the Diameter for δ > 0: Proof of Theorem 1.4

In this section, we prove Theorem 1.4 by extending the argument in [13] from δ = 0 to
δ > 0. We shall also extend the lower bound for δ = 0 to models (b) and (c).

For model (c), denote by

{g(t, j) = s}, 1 ≤ j ≤ m, (2.1)

the event that at time t the j th edge of vertex t is attached to the earlier vertex s < t . For
models (a) and (b), this event means that in {G1,δ′(mt)} the edge from vertex m(t − 1) + j

is attached to one of the vertices m(s − 1) + 1, . . . ,ms. It is a direct consequence of the
definition of PA-models that the event (2.1) increases the preference for vertex s, and hence
decreases (in a relative way) the preference for the vertices u, 1 ≤ u ≤ t, u 	= s. It should be
intuitively clear that another way of expressing this effect is to say that, for different s1 	= s2,
the events {g(t1, j1) = s1} and {g(t2, j2) = s2} are negatively correlated. In order to state
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such a result, we introduce some notation. For integer ns ≥ 1 and i = 1, . . . , ns , we denote
by

Es =
ns⋂

i=1

{g(ti , ji) = s}, (2.2)

the event that at time ti the ji th edge of vertex ti is attached to the earlier vertex s, for all
i = 1, . . . , ns . We will start by proving that for each k ≥ 1 and all possible choices of ti , ji ,
the events Es , for different s, are negatively correlated:

Lemma 2.1 (Negative correlation of attachment events) For distinct s1, s2, . . . , sk ,

P

(
k⋂

i=1

Esi

)

≤
k∏

i=1

P(Esi ). (2.3)

Proof We will use induction on the largest edge number present in the events Es . Here, for
an event {g(t, j) = s}, we let the edge number be m(t − 1) + j , which is the order of the
edge when we consider the edges as being attached in sequence. The induction hypothesis
is that (2.3) holds for all k and all choices of ti , ji such that maxi,s m(ti − 1) + ji ≤ e, where
induction is performed with respect to e. We initialize the induction for e = m in models
(a) and (b) and for e = 2m in model (c). We note that for this choice of e, the induction
hypothesis holds trivially, since everything is deterministic. This initializes the induction.

To advance the induction, we assume that (2.3) holds for all k and all choices of ti , ji such
that maxi,s m(ti − 1) + ji ≤ e − 1. Clearly, for k and ti , ji such that maxi,s m(ti − 1) + ji ≤
e − 1, the bound follows from the induction hypothesis, so we may restrict attention to the
case that maxi,s m(ti − 1) + ji = e. We note that there is a unique choice of t, j such that
m(t − 1) + j = e. In this case, there are again two possibilities. Either there is exactly one
choice of s and ti , ji such that ti = t, ji = j , or there are at least two of such choices. In the
latter case, we immediately have that

⋂k

i=1 Esi = ∅, since the eth edge can only be connected
to a unique vertex. Hence, there is nothing to prove. Thus, we are left to investigate the case
where there exists unique s and ti , ji such that ti = t, ji = j . Denote by

E′
s =

ns⋂

i=1:(ti ,ji )	=(t,j)

{g(ti , ji) = s}, (2.4)

the restriction of Es to the other edges. Then we can write

k⋂

i=1

Esi = {g(t, j) = s} ∩ E′
s ∩

k⋂

i=1:si 	=s

Esi . (2.5)

By construction, all the edge numbers of the events in E′
s ∩ ⋂k

i=1:si 	=s Esi are at most e − 1.
Thus, we obtain

P

(
k⋂

i=1

Esi

)

≤ E

[

I

[

E′
s ∩

k⋂

i=1:si 	=s

Esi

]

Pe−1(g(t, j) = s)

]

, (2.6)

where Pe−1 denotes the conditional probability given the edge attachments up to the (e−1)st
edge connection, and where, for an event A, I [A] denotes the indicator of A.
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We now first treat model (c), for which we have that

Pe−1(g(t, j) = s) = Ds(t − 1) + δ

(2m + δ)(t − 1)
. (2.7)

We wish to use the induction hypothesis. For this, we note that

Ds(t − 1) = m +
∑

(t ′,j ′):t ′≤t−1

I [g(t ′, j ′) = s]. (2.8)

We note that each of the terms in (2.8) has edge number strictly smaller than e and occurs
with a non-negative multiplicative constant. As a result, we may use the induction hypothesis
for each of these terms. Thus, we obtain, using also m + δ ≥ 0, that,

(2m + δ)(t − 1)P

(
k⋂

i=1

Esi

)

≤ (m + δ)P(E′
s)

k∏

i=1:si 	=s

P(Esi ) +
∑

(t ′,j ′):t ′≤t−1

P(E′
s ∩ {g(t ′, j ′) = s})

k∏

i=1:si 	=s

P(Esi ). (2.9)

We can recombine to obtain

P

(
k⋂

i=1

Esi

)

≤ E

[
I [E′

s]
Ds(t − 1) + δ

(2m + δ)(t − 1)

] k∏

i=1:si 	=s

P(Esi ), (2.10)

and the advancement is completed when we note that

E

[
I [E′

s]
Ds(t − 1) + δ

(2m + δ)(t − 1)

]
= P(Es). (2.11)

The proofs for models (a) and (b) are somewhat simpler, since the events Esi can be refor-
mulated in terms of the graph process {G1,δ′(t)}t≥1. �

We next give the probabilities of Es when ns ≤ 2; we omit the proof, since it is a simple
adaptation to that in [13].

Lemma 2.2 (Connections in PA-models) There exist absolute constants M1,M2, such that
(i) for each 1 ≤ j ≤ m, and t > s,

P
(
g(t, j) = s

) ≤ M1

t1−asa
, (2.12)

and (ii) for t2 > t1 > s, and any 1 ≤ j1, j2 ≤ m,

P
(
g(t1, j1) = s, g(t2, j2) = s

) ≤ M2

(t1t2)1−as2a
, (2.13)

where

a = m

2m + δ
. (2.14)
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We combine the results of Lemmas 2.1 and 2.2 into the following corollary, yielding an
upper bound for the probability of the existence of a path. In its statement, we call a path
� = (s0, s1, . . . , sl) self-avoiding when si 	= sj for all 0 ≤ i < j ≤ l. We use the notation
x ∧ y = min(x, y) and x ∨ y = max(x, y). Again, we omit the proof (for details, see [13]).

Corollary 2.3 (Path probabilities in PA-models) Let � = (s0, s1, . . . , sl) be a self-avoiding
path of length l consisting of the l + 1 unordered vertices s0, s1, . . . , sl , then there exists an
absolute constant C > 0 such that

P
(
� ∈ Gm,δ(t)

) ≤ (m2C)l

l−1∏

i=0

1

(si ∧ si+1)a(si ∨ si+1)
1−a

. (2.15)

2.1 Lower Bound on the Diameter for δ = 0

It follows from (2.15) that for δ = 0,

P
(
� ∈ Gm,δ(t)

) ≤ (m2C)l

l−1∏

i=0

1√
sisi+1

. (2.16)

The further proof that (2.16) implies that for δ ≥ 0,

L = log t

log(3Cm2 log t)
, (2.17)

is a lower bound for the diameter of Gm,δ(t), is identical to the proof of [13, Theorem 5,
p. 14], with n replaced by t . This extends the lower bound for δ = 0 for model (a) in [13] to
models (b)–(c).

2.2 The Lower Bound on Distances for δ > 0

We next improve the bound in the previous section in the case when δ > 0, in which case
a = m/(2m + δ) < 1/2. From the above discussion, we conclude that

P
(
distGm,δ(t)(1, t) = k

) ≤ ck
∑

�s

k−1∏

j=0

1

(sj ∧ sj+1)a(sj ∨ sj+1)
1−a

, (2.18)

where c = m2C, and where the sum is over �s = (s0, . . . , sk) with sk = t, s0 = 1, sl ≥ 1 for all
l = 1, . . . , k − 1 and sl 	= sn for all l 	= n, since we may assume that our path (s0, . . . , sk) is
self-avoiding. Define

fk(i, t) =
∑

�s

k−1∏

j=0

1

(sj ∧ sj+1)a(sj ∨ sj+1)
1−a

, (2.19)

where now the sum is over �s = (s0, . . . , sk) with sk = t, s0 = i, sl ≥ 1 for all l = 1, . . . , k − 1
and sl 	= sn for all l 	= n, so that

P
(
distGm,δ(t)(i, t) = k

) ≤ ckfk(i, t). (2.20)

We study the function fk(i, t) in the following lemma:
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Lemma 2.4 (A bound on fk) Fix a < 1/2. Then, for every b > a such that a + b < 1, there
exists a Ca,b > 0 such that, for every 1 ≤ i < t and all k ≥ 1,

fk(i, t) ≤ Ck
a,b

ibt1−b
. (2.21)

Proof We prove the lemma using induction on k ≥ 1. To initialize the induction hypothesis,
we note that, for 1 ≤ i < t and every b ≥ a,

f1(i, t) = 1

(i ∧ t)a(i ∨ t)1−a
= 1

iat1−a
= 1

t

(
t

i

)a

≤ 1

t

(
t

i

)b

= 1

ibt1−b
. (2.22)

This initializes the induction hypothesis as long as Ca,b ≥ 1.
To advance the induction hypothesis, note that we have the recursion relation

fk(i, t) ≤
i−1∑

s=1

1

sai1−a
fk−1(s, t) +

∞∑

s=i+1

1

ias1−a
fk−1(s, t). (2.23)

We now bound each of these two contributions, making use of the induction hypothesis. For
the first sum, we bound

i−1∑

s=1

1

sai1−a
fk−1(s, t) ≤ Ck−1

a,b

i−1∑

s=1

1

sai1−a

1

sbt1−b
= Ck−1

a,b

i1−at1−b

i−1∑

s=1

1

sa+b

≤ 1

1 − a − b

Ck−1
a,b

ibt1−b
, (2.24)

since a + b < 1. For the second sum, we bound

∞∑

s=i+1

1

ias1−a
fk−1(s, t) ≤ Ck−1

a,b

t−1∑

s=i+1

1

ias1−a

1

sbt1−b
+ Ck−1

a,b

∞∑

s=t+1

1

ias1−a

1

tbs1−b

= Ck−1
a,b

iat1−b

t−1∑

s=i+1

1

s1−a+b
+ Ck−1

a,b

iatb

∞∑

s=t+1

1

s2−a−b

≤ 1

b − a

Ck−1
a,b

ibt1−b
+ 1

1 − a − b

Ck−1
a,b

ibt1−b
, (2.25)

since 1 + b − a > 1, 2 − a − b > 1, b > a and (t/i)a ≤ (t/i)b . We conclude that

fk(i, t) ≤ Ck−1
a,b

ibt1−b

(
1

b − a
+ 2

1 − a − b

)
≤ Ck

a,b

ibt1−b
, (2.26)

when

Ca,b = 1

b − a
+ 2

1 − a − b
≥ 1. (2.27)

This advances the induction hypothesis, and completes the proof. �
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Using Lemmas 2.4 and (2.20), we obtain that

P
(
distGm,δ(t)(1, t) = k

) ≤ (cCa,b)
k

t1−b
. (2.28)

As a result,

P
(
diam(Gm,δ(t)) ≤ k

) ≤ P
(
distGm,δ(t)(1, t) ≤ k

) ≤ (cCa,b)
k+1

t1−b(cCa,b − 1)
= o(1), (2.29)

whenever k ≤ 1−b
log (cCa,b)

log t . We conclude that there exists c2 = c2(m, δ) such that, with high
probability diam(Gm,δ(t)) ≥ c2 log t .

We next extend the above discussion to typical distances.

Lemma 2.5 (Typical distances for δ > 0) Fix m ≥ 1 and δ > 0. Let Ht = distt (A1,A2) be
the distance between two uniformly chosen vertices. Then, for c2 = c2(m, δ) > 0 sufficiently
small, whp, Ht ≥ c2 log t .

Proof For c2 = c2(m, δ) > 0, define

Bt ≡ #
{
i, j ∈ [t] : i < j : distGm,δ(t)(i, j) ≤ c2 log t

}
, (2.30)

where #{A} denotes the cardinality of the set A.
By Lemma 2.4, with K = log (cCa,b ∨ 2) and a < b < 1 − a, and for all 1 ≤ i < j ≤ t ,

P
(
distGm,δ(t)(i, j) = k

) ≤ ckfk(i, j) ≤ eKk

ibj 1−b
. (2.31)

As a result, we obtain that

P
(
distGm,δ(t)(i, j) ≤ c2 log t

) ≤ tKc2

ibj 1−b

eK

eK − 1
, (2.32)

and thus, using also
∑j−1

i=1 i−b ≤ j 1−b/(1 − b),

E[Bt ] ≤ O(1)
∑

1≤i<j≤t

tKc2

ibj 1−b
= O

(
tKc2+1

)
. (2.33)

It now suffices to note that

P(Ht ≤ c2 log t) = E
[
I [distGm,δ(t)(A1,A2) ≤ c2 log t]] = 2E[Bt ] + t

t2
= o(1), (2.34)

by (2.33), for every c2 > 0 such that Kc2 + 1 < 2. �

Note that (2.17) is also a lower bound on typical distances in case δ = 0, which can be
proved as above.
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3 A log log Upper Bound on the Diameter: Proof of Theorem 1.6

The proof of Theorem 1.6 is divided into two key steps. In the first, in Theorem 3.1, we
bound the diameter of the core which consists of the vertices with degree at least a certain
power of log t . This argument is close in spirit to the argument in [18] or [37] used to prove
bounds on the typical distance for the inhomogeneous random graph and the configuration
model, respectively, but substantial adaptations are necessary to deal with preferential at-
tachment. After this, in Theorem 3.6, we derive a bound on the distance between vertices
with a small degree and the core. We start by defining and investigating the core of the PA-
model. In the sequel, it will be convenient to prove Theorem 1.6 for 2t rather than for t .
Clearly, this does not make any difference for the results. We make use of some technical
results, stated in Appendix A.

3.1 The Diameter of the Core

We recall that τ = 3 + δ/m, so that −m < δ < 0 corresponds to τ ∈ (2,3). We take σ >

1/(3 − τ) = −m/δ > 1 and define the core Coret to be

Coret = {
i ∈ [t] : Di(t) ≥ (log t)σ

}
, (3.1)

i.e., all the vertices which at time t have degree at least (log t)σ .
For A ⊆ [t], we write

diamt (A) = max
i,j∈A

distGm,δ(t)(i, j). (3.2)

Then, diam2t (Coret ) is bounded in the following theorem:

Theorem 3.1 (The diameter of the core) Fix m ≥ 2 and δ ∈ (−m,0). For every σ >

1/(3 − τ), whp,

diam2t (Coret ) ≤ (1 + o(1))
4 log log t

|log(τ − 2)| . (3.3)

The proof of Theorem 3.1 is divided into several smaller steps. We start by proving that
the diameter diam2t (Innert ), where

Innert = {i ∈ [t] : Di(t) ≥ u1}, and where u1 = t
1

2(τ−1) (log t)− 1
2 , (3.4)

is, whp, bounded. The choice of u1 is a technical one: u1 is the largest value l so that, whp,
the total degree of vertices with degree exceeding l can be bounded from below by t l2−τ , see
Lemma A.1. In Proposition 3.2, we will show that the diameter of Innert is bounded. After
this, we will show that the distance from any vertex in the core Coret to the inner core Innert
can be bounded by a fixed constant times log log t . This also shows that diam2t (Coret ) is
bounded by a different constant times log log t . We now give the details.

Proposition 3.2 (The diameter of the inner core) Fix m ≥ 2 and δ ∈ (−m,0). Then whp,

diam2t (Innert ) ≤ 2(τ − 1)

3 − τ
+ 6. (3.5)
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Proof We first introduce the important notion of a t -connector between a vertex i ∈ [t] and
a set of vertices A ⊆ [t]. This notion will play a crucial role throughout the proof. We say
that the vertex j ∈ [2t] \ [t] is a t -connector between i and A if one of the first two edges
incident to j connects to i and the other of the first two edges incident to j connects to a
vertex in A. Thus, when there exists a t -connector between i and A, the distance between i

and A in Gm,δ(2t) is at most 2.
We continue the analysis by first considering model (c). We note that for a set of vertices

A and a vertex i with degree at time t equal to Di(t), we have that, conditionally on Gm,δ(t),
the probability that j ∈ [2t] \ [t] is a t -connector for i and A is at least

(DA(t) + δ|A|)(Di(t) + δ)

[2t (2m + δ)]2
≥ ηDA(t)Di(t)

t2
, (3.6)

where in the inequality, we use that Di(t) ≥ m, and we let η = (m+δ)2/(2m(2m+δ))2 > 0,
while, for any A ⊆ [t], we write

DA(t) =
∑

i∈A

Di(t). (3.7)

Note that for fixed j ∈ [2t] \ [t] the lower bound (3.6) holds independently of the fact
whether the other vertices are t -connectors or not.

We now give a coupling proof which shows that a subset of size nt = �√t� of the set
Innert has, whp, a bounded diameter. Lemma A.1 in the appendix shows that, whp, Innert
contains at least

√
t vertices. Denote the first �√t� vertices of Innert by I . For each pair

i1, i2 ∈ I and each j ∈ [2t] \ [t], the probability that j is a t -connector for i1, i2 is, by (3.6),
at least

ηu2
1

t2
= ηt

1
τ−1

t2 log t
≥ t

1
τ−1 −2

log2 t
= qt , (3.8)

independently of the fact whether the other vertices are t -connectors or not. In the coupling
we intend to compare the set I and all pairs of vertices of the set I , which are t -connected
by some j ∈ [2t] \ [t] with a so-called multinomial random graph Hnt . The graph Hnt has
nt vertices and we identify the et = nt (nt − 1)/2 ∼ t/2 pairs of vertices, which we number
from 1 to et in an arbitrary order, with et cells of a multinomial experiment with t trials and
probabilities given by

pk = qt , 1 ≤ k ≤ et , p0 = 1 − etqt . (3.9)

We can represent the t trials by independent random vectors N1,N2, . . . ,Nt , where

Nj = (Nj,1,Nj,2, . . . ,Nj,et ), 1 ≤ j ≤ t, (3.10)

with distribution

P(Nj = 1i ) = qt , P(Nj = 0) = 1 − etqt , (3.11)

where 1i is the ith unit vector of length et , and 0 the null vector. If cell k of the multinomial
experiment is not empty, i.e., if

∑t

j=1 Nj,k > 0, then we draw the edge with number k in the
graph Hnt , if the cell is empty then this edge is left out. Note that cell 0 is just an overflow
cell, which counts the number of trials that not resulted in one of the cells 1,2, . . . , et .

By the statement in (3.8) the distance in Gm,δ(2t) between any two vertices in I is at
most two times the distance between the corresponding vertices in Hnt . In Lemma A.2 of
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the appendix we will show that the diameter of Hnt is at most the diameter of a uniform
Erdős-Rényi graph G(nt ,mt), with nt vertices and mt edges, where

mt = 1

2
et

(
1 − (1 − qt )

t
)
. (3.12)

From [29, Sect. 1.4] we conclude that the above mentioned uniform Erdős-Rényi graph
G(nt ,mt ) is asymptotically equivalent with the classical binomial Erdős-Rényi graph
G(nt , λt ), where the edge probability λt is defined by

λt = 1

2

(
1 − (1 − qt )

t
) ∼ t

1
τ−1 −1

2 log2 t
. (3.13)

Next, we show that diam(G(nt , λt )) is, whp, bounded by τ−1
3−τ

+ 1. For this we use the
results in [9, Corollaries 10.11 and 10.12], which give sharp bounds on the diameter of
an Erdős-Rényi random graph. Indeed, this results imply that if p2n − 2 logn → ∞
and n2(1 − p) → ∞, then diam(G(n,p)) = 2, whp, while, for d ≥ 3, if
(logn)/d − 3 log logn → ∞ and pdnd−1 −2 logn → ∞, while pd−1nd−2 −2 logn → −∞,
then diam(G(n,p)) = d , whp. In our case, n = nt = �t1/2� and p = λt , which implies that,
whp, diam(G(n,p)) = � τ−1

3−τ
+ 1�. We therefore obtain that the diameter of I in Gm,δ(2t) is,

whp, bounded by

diam2t (I ) ≤ 2(τ − 1)

3 − τ
+ 2. (3.14)

We finally show that for any i ∈ Innert \I , the probability that there does not exist a
t -connector connecting i and I is small. Indeed, since DI(t) ≥ √

tu1 and Di(t) ≥ u1, the
mentioned probability is bounded above by

(
1 − ηDI (t)Di(t)

t2

)t

≤ exp

{
−ηDI (t)Di(t)

t

}

≤ exp

{
−ηu2

1√
t

}
≤ exp

{
−ηt

1
τ−1 − 1

2

log t

}
= o(t−1), (3.15)

for τ < 3. Thus, whp, such a vertex i does not exist. This proves that whp the distance
between any vertex i ∈ Innert \I and I is bounded by 2, and, together with the above bound
on diam2t (I ) we thus obtain (3.5). �

Proposition 3.3 (Distance from the core to the inner core) Fix m ≥ 2 and δ ∈ (−m,0). With
high probability, the inner core Innert can be reached from any vertex in the core Coret

using no more than 2 log log t

| log(τ−2)| edges in Gm,δ(2t). More precisely, whp,

max
i∈Coret

min
j∈Innert

distGm,δ(2t)(i, j) ≤ 2 log log t

|log(τ − 2)| . (3.16)

Proof For k ≥ 1, we define

N (k) = {i ∈ [t] : Di(t) ≥ uk}, (3.17)

with u1 defined in (3.4), and where we define uk, for k ≥ 2, recursively, so that for any
vertex i ∈ [t] with degree at least uk , the probability that there is no t -connector for the
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vertex i and the set N (k−1), conditionally on Gm,δ(t), is tiny. According to (3.6) and (A.1)
in the appendix, this probability is at most

(
1 − ηDN (k−1)Di(t)

t2

)t

≤ exp

{
−ηBt(uk−1)

2−τ uk

t

}
= o(t−2), (3.18)

for some B > 0, when we define

uk = D log t (uk−1)
τ−2, (3.19)

with D exceeding 2(ηB)−1 and t is sufficiently large so that uk ≤ u1. The following lemma
identifies uk :

Lemma 3.4 (Identification of uk) For each k ∈ N,

uk = Dak (log t)bk t ck , (3.20)

where

ak = 1 − (τ − 2)k−1

3 − τ
, bk = 1 − (τ − 2)k−1

3 − τ
− 1

2
(τ − 2)k−1,

ck = (τ − 2)k−1

2(τ − 1)
.

(3.21)

Proof We leave the straightforward induction proof to the reader. �

Then, the key step in the proof of Proposition 3.3 is the following lemma:

Lemma 3.5 (Connectivity between N (k−1) and N (k)) Fix m ≥ 2 and δ ∈ (−m,0). Then,
uniformly in k, the probability that there exists an i ∈ N (k) that is not at distance at most
two from N (k−1) in Gm,δ(2t) is o(t−1).

Proof It follows from (3.18) that the probability in the statement is by Boole’s inequality
bounded by

t exp

(
−ηBt[uk−1]2−τ uk

t

)
= t · o(t−2) = o(t−1). (3.22)

�

We now complete the proof of Proposition 3.3. Fix

k∗ =
⌊

log log t

|log(τ − 2)|
⌋
. (3.23)

As a result of Lemma 3.5, we have that the distance between N (k∗) and Innert = N (1) is at
most 2k∗. Therefore, Proposition 3.3 follows when we can show that

Coret = {
i : Di(t) ≥ (log t)σ

} ⊆ N (k∗) = {i : Di(t) ≥ uk∗ }, (3.24)

so that it suffices to prove that (log t)σ ≥ uk∗ , for any σ > 1/(3 − τ). This follows trivially
for t large from the explicit representation of uk∗ given by Lemma 3.4. �
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Proof of Theorem 3.1 We note that whp

diam2t (Coret ) ≤ 2(τ − 1)

3 − τ
+ 6 + 4k∗, (3.25)

where k∗ is given in (3.23), and where we have made use of Propositions 3.2 and 3.3. This
proves Theorem 3.1. �

3.2 Connecting the Periphery to the Core

In this section, we extend the results of the previous section and, in particular, study the
distance between the vertices not in the core Coret and the core. The main result is the
following theorem:

Theorem 3.6 (Connecting the periphery to the core) Fix m ≥ 2 and δ ∈ (−m,0). For every
σ > 1/(3 − τ), whp, the maximal distance between any vertex and Coret in Gm,δ(2t) is
bounded from above by 2σ log log t/ logm.

Together with Theorem 3.1, Theorem 3.6 proves the main result in Theorem 1.6.
The proof of Theorem 3.6 consists of two key steps. The first key step in Proposition 3.7

states that the distance between any vertex in [t] and the core Coret is bounded by a constant
times log log t . The second key step in Proposition 3.10 shows that the distance between any
vertex in [2t] \ [t] and [t] is bounded by another constant times log log t .

Proposition 3.7 (Connecting half of the periphery to the core) Fix m ≥ 2 and δ ∈ (−m,0).
For every σ > 1/(3 − τ), whp, the distance between any vertex in [t] and the core Coret in
Gm,δ(2t) is bounded from above by σ log log t/ logm.

Proof We start from a vertex i ∈ [t] and will show that the probability that the distance be-
tween i and Coret is at least σ log log t/ logm is o(t−1). This proves the claim. For this, we
explore the neighborhood of i as follows. From i, we connect its m ≥ 2 edges. Then, suc-
cessively, we connect the m edges from each of the at most m vertices that i has connected
to and have not yet been explored. We continue in the same fashion. We call the arising
process when we have explored up to distance k from the initial vertex i the k-exploration
tree of vertex i.

When we never connect two edges to the same vertex, then the number of vertices we
can reach within k steps is precisely equal to mk . We call an event where an edge connects
to a vertex which already was in the exploration tree a collision. When k increases, the
probability of a collision increases. However, the probability that there exists a vertex for
which more than l collisions occur in its k-exploration tree, where l ≥ 1, before it hits the
core is small, as we prove now:

Lemma 3.8 (A bound on the probability of multiple collisions) Fix m ≥ 2 and δ ∈ (−m,0).
Fix l ≥ 1, b ∈ (0,1] and take k ≤ σ log log t/ logm. Then, for every vertex i ∈ [t], the proba-
bility that its k-exploration tree has at least l collisions before it hits Coret ∪[tb] is bounded
above by

ml(log t)2σ l/tbl . (3.26)
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Proof Take i ∈ [t] \ [tb] and consider its k-exploration tree T (k)
i . Since we add edges after

time tb the denominator in (1.1)–(1.3) is at least tb . Moreover, before hitting the core, any
vertex in the k-exploration tree has degree at most (log t)σ . Hence, for l = 1, the probability
mentioned in the statement of the lemma is at most

∑

v∈T (k)
i

Dv(t) + δ

tb
≤

∑

v∈T (k)
i

(log t)σ

tb
≤ mk+1(log t)σ

tb
, (3.27)

where the bound follows from δ < 0 and #{v ∈ T (k)
i } ≤ mk+1. For general l this upper bound

becomes:
(

mk+1(log t)σ

tb

)l

. (3.28)

When k = σ log log t/ logm, we have that mkl = (log t)σ l . Therefore, the claim in Lemma 3.8
holds. �

We next prove that there exists a b > 0 such that, whp, [tb] is a subset of the core. Note
that in this lemma the conditions m ≥ 2 or δ ∈ (−m,0) are not necessary.

Lemma 3.9 (Early vertices have large degrees whp) Fix m ≥ 1. There exists a b > 0 such
that, for every σ > 1/(3−τ), whp, minj≤tb Dj (t) ≥ (log t)σ . As a result, whp, [tb] ⊆ Coret .

We defer the proof of Lemma 3.9 to Appendix A.3. Now we are ready to complete the
proof of Proposition 3.7:

Proof of Proposition 3.7 By combining Lemmas 3.8 and 3.9, the probability that there exists
an i ∈ [t] for which the exploration tree T (k)

i has at least l collisions before hitting the core
is o(1), whenever l > 1/b, since, by Boole’s inequality, it is bounded by

ml

t∑

i=1

(log t)2σ l/tbl = ml(log t)2σ l t−bl+1 = o(1). (3.29)

When the k-exploration tree hits the core, then we are done. When the k-exploration tree
from a vertex i does not hit the core, but has less than l collisions, then there are at least
mk−l vertices in k-exploration tree. Indeed, when we have at most l collisions, the size of
the k-exploration tree is minimal when all edges of the root connect to the same vertex v1,
all edges of v1 connect to the same vertex v2, etc. Iterating this at most l levels deep yields
a tree with at least mk−l vertices.

When k = σ log log t/ logm − 2, mk−l ≥ (log t)σ+o(1). The total degree of the core is, by
(A.1) in the appendix, at least

∑

i∈Coret

Di(t) ≥ Bt(log t)−(τ−2)σ , (3.30)

for some B > 0. The probability that there does not exist a t -connector between the
k-exploration tree and the core is, by (3.6) and (3.30), bounded above by

exp

{
−ηBt(log t)−(τ−2)σ (log t)σ+o(1)

t

}
= o(t−1), (3.31)

since σ > 1/(3 − τ). This completes the proof. �
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Proposition 3.10 (Connecting the remaining periphery) Fix m ≥ 2 and δ ∈ (−m,0). For
every σ > 1/(3 − τ), whp, the maximal distance between any vertex and [t] in Gm,δ(2t) is
bounded from above by σ log log t/ logm.

Proof Take k = σ log log t/ logm − 1, and j ∈ [2t] \ [t] with distance larger than k to the
set of vertices [t]. We now apply Lemma 3.8 with t replaced by 2t and letting l = 2 and
b = bt ∈ (0,1) such that (2t)b = t , to conclude that with probability exceeding 1 − o(1),
the k-exploration tree of j has at most 1 collision before it hits Core2t ∪ [t]. We can hence
conclude that with probability exceeding 1 − o(1), there are at least mk = (m − 1)mk−1

vertices in [2t] \ [t] at distance precisely equal to k from our starting vertex j . Denote these
vertices by i1, . . . , imk

. We consider case (c), the proof for (a) and (b) is similar. Note that,
uniformly in s ∈ [2t] \ [t],

∑t

i=1(Di(s) + δ)

(2m + δ)s
≥ 1

2
. (3.32)

Hence,

P
(
�l ∈ [mk] such that distGm,δ(2t)(il ,Core2t ∪ [t]) ≤ 1

) ≤ 2−mk = o(t−1), (3.33)

since mk = m−1
m2 (log t)σ , with σ > 1/(3−τ) > 1. Therefore, any vertex j ∈ [2t]\[t] is, whp,

within distance k+1 from Core2t ∪[t]. Proposition A.3 shows that, whp the set Core2t ⊆ [t],
so that, whp, Core2t ∪ [t] = [t] and the proposition follows. �

Proof of Theorem 3.6 Proposition 3.10 states that whp every vertex in Gm,δ(2t) is within
distance σ log log t/ logm of [t] and Proposition 3.7 states that whp every vertex in [t] is
at most distance σ log log t/ logm from the core Coret . This shows that every vertex in
Gm,δ(2t) is whp within distance 2σ log log t/ logm from the core. �

Proof of Theorem 1.6 Theorem 3.6 states that every vertex in Gm,δ(2t) is within distance
2σ log log t

logm
of the core Coret . Theorem 3.1 states that the diameter of the core is at most

4 log log t

| log(τ−2)| (1 + o(1)), so that the diameter of Gm,δ(2t) is at most CG log log t , where CG is
given in (1.7), because we can choose any σ > 1/(3 − τ). This completes the proof of The-
orem 1.6. �

4 A log log t Lower Bound on the Diameter: Proof of Theorem 1.7

We will again prove this theorem for time 2t rather than time t . To show that the diameter of
the graph is, whp, at least k, we will study, at time 2t , the k-exploration trees T (k)

i of vertices
i ∈ [2t]\[t] as defined above. We shall call the tree T (k)

i proper if the following conditions
hold:

• The k-exploration tree has no collisions;
• All vertices of T (k)

i are in [2t]\[t];
• No other vertex connects to a vertex in T (k)

i .

When such a tree exists in Gm,δ(2t) for a certain vertex i then we know that the diameter
is at least k, since the distance between the root of the tree i and the vertices at depth k is
exactly k; there cannot be a shorter route.
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To prove that a proper k-exploration tree exists in Gm,δ(2t), we will use a second moment
method. Let Tk

m(2t) be the set of all possible k-exploration trees that can exist in Gm,δ(2t)

and satisfy the first two conditions. Note that the order in which the edges are added matters:
if two edges are added in a different order, then the arising exploration tree will be considered
a different tree. Let Z

(k)
m,δ(2t) be the number of proper k-exploration trees in Gm,δ(2t), i.e.,

Z
(k)
m,δ(2t) =

∑

T ∈Tk
m(2t)

I [T ⊆ Gm,δ(2t) and T is proper]. (4.1)

Here the event that all edges of T have been formed in Gm,δ(2t) is denoted by T ⊆ Gm,δ(2t).
In Sect. 4.1 we will investigate the first moment of Z

(k)
m,δ(2t) and prove the following:

Proposition 4.1 (Expected number of proper trees tends to infinity) Fix m ≥ 2 and δ > −m.
Let

k = ε

logm
log log t, with 0 < ε < 1. (4.2)

Then

lim
t→∞ E

[
Z

(k)
m,δ(2t)

] = ∞. (4.3)

The variance of Z
(k)
m,δ(2t) will be the subject of Sect. 4.2, where we will prove the follow-

ing:

Proposition 4.2 (Concentration of the number of proper trees) Fix m ≥ 2, δ > −m and let
0 ≤ k ≤ log log t

logm
. Then there exists a constant cm,δ > 0, such that, for t sufficiently large,

Var
(
Z

(k)
m,δ(2t)

) ≤ cm,δ

(log t)2

t
E

[
Z

(k)
m,δ(2t)

]2 + E
[
Z

(k)
m,δ(2t)

]
. (4.4)

We use these two propositions to prove Theorem 1.7:

Proof of Theorem 1.7 We first use the Chebychev inequality to obtain that

P
(
diam(Gm,δ(2t)) < k

) ≤ P
(
Z

(k)
m,δ(2t) = 0

) ≤ Var(Z(k)
m,δ(2t))

E[Z(k)
m,δ(2t)]2

. (4.5)

By Proposition 4.2, the right-hand side of (4.5) is, for some constant cm,δ > 0, at most

cm,δ

(log t)2

t
+ 1

E[Z(k)
m,δ(2t)] = o(1), (4.6)

by Proposition 4.1. �

4.1 The First Moment of the Number of Proper Trees

Let B T denote the event that no vertex outside a tree T connects to a vertex in this tree. We
can then write that the expected number of proper k-exploration trees in Gm,δ(2t) equals
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E
[
Z

(k)
m,δ(2t)

] =
∑

T ∈Tk
m(2t)

P
(

T ⊆ Gm,δ(2t) and T is proper
)

=
∑

T ∈Tk
m(2t)

P
(

T is proper|T ⊆ Gm,δ(2t)
)
P
(

T ⊆ Gm,δ(2t)
)

=
∑

T ∈Tk
m(2t)

P
(

B T |T ⊆ Gm,δ(2t)
) · P

(
T ⊆ Gm,δ(2t)

)
. (4.7)

We will first give a lower bound on the probability that a given k-exploration tree exists
in the graph at time 2t . For convenience we will write am,δ = m+δ

3(2m+δ)
.

Lemma 4.3 (Lower bound on existence probability) Fix m ≥ 2, δ > −m and k ≥ 0. Given
a proper k-exploration tree T ∈ Tk

m(2t), then, for t sufficiently large,

P
(

T ⊆ Gm,δ(2t)
) ≥

(
am,δ

t

)m(k)−1

, (4.8)

where m(k) = mk+1−1
m−1 .

Proof Since every vertex is added before time 2t , the denominator in (1.1)–(1.3) is at most
3t (2m + δ). The degree of all vertices already in the graph is at least m, so the probability
that a certain given edge is formed is at least

m + δ

3t (2m + δ)
= am,δ

t
. (4.9)

Since exactly m(k) − 1 edges have to be formed to form the given tree T , we have that

P
(

T ⊆ Gm,δ(2t)
) ≥

(
am,δ

t

)m(k)−1

. (4.10)

�

We will now give a lower bound on the probability that no other vertex connects to a
given tree.

Lemma 4.4 (No other vertex connects to T ) Fix m ≥ 2, δ > −m and 0 ≤ k ≤ log log t

logm
. Given

a proper k-exploration tree T ∈ Tk
m(2t), then, for t sufficiently large, and writing mδ =

m + 1 + δ > 1,

P
(

B T |T ⊆ Gm,δ(2t)
) ≥

(
1 − mδm

k+1

t

)mt

. (4.11)

Remark 4.5 In P(B T |T ⊆ Gm,δ(2t)), B T makes a claim about edges not in T , while the
event T ⊆ Gm,δ(2t) states that all edges in T are formed in our random graph process. Thus
conditioning on T ⊆ Gm,δ(2t) gives information only about inside edges.

Proof First note that for k ≤ log log t

logm
and t sufficiently large, mδm

k+1 ≤ mδm log t ≤ t . So

0 ≤ 1 − mδm
k+1

t
≤ 1. Further note that vertices in [t] cannot connect to a vertex in T , since
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T ⊆ [2t]\[t]. In the remainder of the proof we will refer to outside edges as those edges
that do not belong to T , of which there are exactly mt − (m(k) − 1) added after time t . For
A a set of vertices, let En(A) denote the event that the nth outside edge added after time t

connects to a vertex in A and let E n(A) be the complement of En(A). We use induction on
the number of outside edges that did not connect to the tree T , i.e., we show that:

P

(
n⋂

i=1

E i (T )

∣∣
∣T ⊆ Gm,δ(2t)

)

≥
(

1 − mδm
k+1

t

)n

, (4.12)

by induction on n = 0, . . . ,mt − (m(k) − 1). For n = 0 the above holds, because both sides
equal 1. Now assume that the above holds for 0 ≤ n < mt − (m(k) − 1), then

P

(
n+1⋂

i=1

E i (T )

∣
∣∣T ⊆ Gm,δ(2t)

)

= P

(

E n+1(T )

∣
∣∣

n⋂

i=1

E i (T ) ∩ {T ⊆ Gm,δ(2t)}
)

P

(
n⋂

i=1

E i (T )

∣
∣∣T ⊆ Gm,δ(2t)

)

≥
(

1 − P

(

En+1(T )

∣
∣∣

n⋂

i=1

E i (T ) ∩ {T ⊆ Gm,δ(2t)}
))

·
(

1 − mδm
k+1

t

)n

. (4.13)

Since it is known that at the time that the (n + 1)-st outside edge after time t is added,
no other outside edge has connected to a vertex in the tree, we know that the degree of all
vertices in the tree at that moment is at most m + 1. Further, since this edge is added after
time t , the denominator of (1.1)–(1.3) will be at least t . Thus, the right-hand side of (4.13)
is at least

(
1 −

∑

i∈T

m + 1 + δ

t

)
·
(

1 − mδm
k+1

t

)n

≥
(

1 − mδm
k+1

t

)
·
(

1 − mδm
k+1

t

)n

=
(

1 − mδm
k+1

t

)n+1

, (4.14)

where the inequality holds because there are less than mk+1 vertices in the tree. Applying
the above to n = mt − (m(k) − 1), we obtain that

P
(

B T |T ⊆ Gm,δ(2t)
) ≥

(
1 − mδm

k+1

t

)mt−(m(k)−1)

≥
(

1 − mδm
k+1

t

)mt

. (4.15)

�

We finally give a lower bound on the number of possible proper k-exploration trees that
can be formed. It should be noted that when a vertex i connects to a vertex j , we will always
have that i > j . So when exploring a vertex i in the exploration tree, all m vertices this vertex
connects to have a smaller label than i.

Lemma 4.6 (Number of proper trees) Fix m ≥ 2 and 0 ≤ k ≤ log log t

logm
. Then, for t sufficiently

large, the number of possible proper k-exploration trees at time 2t is at least (t/mk+1)m(k)
,

where we recall that m(k) = mk+1−1
m−1 .
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Proof For t sufficiently large and k ≤ log log t

logm
, mk+1 ≤ m log t ≤ t . Since the k-exploration

tree of a vertex i has to be proper, there are no collisions, so the number of vertices in the
tree equals

#{v ∈ T (k)
i } = m(k). (4.16)

For any subset X ⊆ [2t]\[t] with #{v ∈ X} = m(k) there exists at least one possible proper
k-exploration tree. To see this, first order the vertex labels in descending order. Let the first
vertex, i.e. the vertex with the largest label, be the root of the tree. Then let the next m

vertices be the vertices at distance 1 from the root, the next m2 vertices be the vertices
at distance 2 from the root, etcetera, until the last mk vertices which will be at distance
k from the root. This way, all vertices will connect to m vertices with a smaller label, i.e.,
vertices that were already in the graph when the vertex was added, so this is a possible proper
k-exploration tree with all vertices in X.

The number of subsets of [2t]\[t] of size m(k) is
(

t

m(k)

)
which is at least

(
t

m(k)

)m(k)

≥
(

t

mk+1

)m(k)

, (4.17)

where we used that for 1 ≤ b ≤ a we have that (a − i)b ≥ (b − i)a for all 0 ≤ i < b, so that

(
a

b

)
=

b−1∏

i=0

a − i

b − i
≥

(
a

b

)b

. (4.18)

�

We can now combine the three bounds above to get a lower bound on the expected
number of proper k-exploration trees.

Corollary 4.7 (Lower bound on expected number of proper trees) Fix m ≥ 2, δ > −m and
0 ≤ k ≤ log log t

logm
. Then, for t sufficiently large,

E
[
Z

(k)
m,δ(2t)

] ≥ t

am,δ

(
am,δ

mk+1

)mk+1(
1 − mδm

k+1

t

)mt

. (4.19)

Proof Using the bounds from Lemmas 4.3, 4.4 and 4.6 we get that

E
[
Z

(k)
m,δ(2t)

] =
∑

T ∈Tk
m(2t)

P
(

B T |T ⊆ Gm,δ(2t)
) · P

(
T ⊆ Gm,δ(2t)

)

≥ #
{

T ∈ T
k
m(2t)

}
(

1 − mδm
k+1

t

)mt(
am,δ

t

)m(k)−1

≥
(

t

mk+1

)m(k)(
1 − mδm

k+1

t

)mt(
am,δ

t

)m(k)−1

≥ t

am,δ

(
am,δ

mk+1

)mk+1(
1 − mδm

k+1

t

)mt

. (4.20)

�
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The factor t in the corollary above turns out to be crucial for the remainder of the proof.
This factor arises from the fact that there is exactly one edge less in a proper k-exploration
tree than there are vertices.

We can now show that the expected number of k-exploration trees tends to infinity, for
k = ε

logm
log log t , with 0 < ε < 1.

Proof of Proposition 4.1 First note that for k = ε
logm

log log t , with 0 < ε < 1, mk = (log t)ε .
We can then use Corollary 4.7 to get that

lim
t→∞ E

[
Z

(k)
m,δ(2t)

] ≥ lim
t→∞

t

am,δ

(
am,δ

mk+1

)mk+1(
1 − mmδm

k+1

mt

)mt

= ∞, (4.21)

since
(

am,δ

mk+1

)mk+1

=
(

am,δ

m(log t)ε

)m(log t)ε

, (4.22)

and
(

1 − mmδm
k+1

mt

)mt

∼ e−m2mδ(log t)ε . (4.23)

�

It is easy to see that the same argument can be applied to

k = log log t

logm
− log log log t

logm
− 1. (4.24)

4.2 The Second Moment of the Number of Proper Trees

In this section we will investigate the variance of Z
(k)
m,δ(2t). To shorten the notation, for a

k-exploration tree T ∈ Tk
m(2t), let FT denote the event that T ⊆ Gm,δ(2t) and T is proper.

Then, the variance of the number of proper k-exploration trees in Gm,δ(2t) is given by

Var
(
Z

(k)
m,δ(2t)

) = Var

( ∑

T ∈Tk
m(2t)

I
[

T ⊆ Gm,δ(2t) and T is proper
]
)

= Var

( ∑

T ∈Tk
m(2t)

I [FT ]
)

=
∑

T ,T ′∈Tk
m(2t)

Cov
(
I [FT ], I [FT ′ ])

=
∑

T ,T ′∈Tk
m(2t)

T 	=T ′

(
P(FT ∩ FT ′) − P(FT )P(FT ′)

)

+
∑

T ∈Tk
m(2t)

P(FT )(1 − P(FT )). (4.25)

We start by studying the terms of the first sum in the following lemma.
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Lemma 4.8 (Weak dependence of tree occurrences) Fix m ≥ 2, δ > −m and 0 ≤ k ≤ log log t

logm
.

Let T , T ′ ∈ Tk
m(2t) with T 	= T ′. Then, for t sufficiently large,

P(FT ∩ FT ′) − P(FT )P(FT ′) ≤
((

1 + 2mδm log t

t

)2m log t

− 1

)
P(FT )P(FT ′). (4.26)

Proof When T ∩ T ′ 	= ∅, at least one edge of one of the trees will connect to a vertex in
the other tree, so the trees T and T ′ cannot both be proper. Thus, for T ∩ T ′ 	= ∅, trivially
(4.26) holds.

For T ∩ T ′ = ∅, we have to take a closer look at the probabilities involved. All three
probabilities in the lemma are a product over all edges of the probability that either the edge
does not connect to any of the vertices in the tree(s) or the probability that the edge makes a
prescribed connection in (one of) the tree(s). Let Ej,s(A) denote the event that the j th edge
of vertex s connects to a vertex in A, with Ej,s(i) = Ej,s({i}). Let E j,s(A) be the complement
of Ej,s(A). We have that

P(Ej,s(A)) =
∑

i∈A

P(Ej,s(i)), (4.27)

because the events on the right-hand side are disjunct. These probabilities are given by the
growth rules (1.1)–(1.3).

Suppose that the j th edge, 1 ≤ j ≤ m, of a vertex t0 should not connect to a vertex in
T ∪ T ′. Then in P(FT ∩ FT ′), there will be a factor

P
(

E j,t0(T ∪ T ′)
) = 1 − P

(
Ej,t0(T ∪ T ′)

) = 1 −
∑

i∈T ∪T ′
P(Ej,t0(i)). (4.28)

In P(FT )P(FT ′), there will be a factor
(

1 −
∑

i∈T

P(Ej,t0(i))

)(
1 −

∑

i∈T ′
P(Ej,t0(i))

)
. (4.29)

It is easy to see that 1 − x − y ≤ (1 − x)(1 − y) for x, y ≥ 0, so (4.29) is at least as big as
(4.28).

When the j th edge, 1 ≤ j ≤ m, of a vertex t0, t + 1 ≤ t0 ≤ 2t , should connect to a vertex
h ∈ T , then in P(FT ∩ FT ′) there will only be a factor

P(Ej,t0(h)), (4.30)

since it will then automatically not connect to a vertex in T ′. In P(FT )P(FT ′), however,
there will be a factor

P(Ej,t0(h))

(
1 −

∑

i∈T ′
P(Ej,t0(i))

)
. (4.31)

When we multiply (4.31) by (1 − ∑
i∈T ′ P(Ej,t0(i)))

−1 we obtain precisely (4.30). By sym-
metry, the same holds when an edge should connect to a vertex in T ′. Since the degree of
the vertices in the trees is at most m + 1, the edges of interest are added after time t and
there are less than mk+1 vertices in the tree, we have that

(
1 −

∑

i∈T ′
P(Ej,t0(i))

)−1

≤
(

1 − mδm
k+1

t

)−1

. (4.32)
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Since there are less than mk+1 edges in both T and T ′, for T ∩ T ′ = ∅,

P(FT ∩ FT ′)

P(FT )P(FT ′)
≤

∏

h∈T

(
1 −

∑

h∈T ′
P(Ej,t0(h))

)−1 ∏

k∈T ′

(
1 −

∑

k∈T ′
P(Ej,t0(k))

)−1

≤
(

1 − mδm
k+1

t

)−2mk+1

=
(

1 + mδm
k+1

t − mδmk+1

)2mk+1

≤
(

1 + mδm log t

t − mδm log t

)2m log t

≤
(

1 + 2mδm log t

t

)2m log t

. (4.33)

�

We can now use the lemma above to give an upper bound on the variance of Z
(k)
m,δ(2t) in

terms of the expectation of Z
(k)
m,δ(2t).

Proof of Proposition 4.2 Let cm,δ = 8mδm
2. Then, using Lemma 4.8, we have that

Var
(
Z

(k)
m,δ(2t)

) =
∑

T ,T ′∈Tk
m(2t)

T 	=T ′

(
P(FT ∩ FT ′) − P(FT )P(FT ′)

) +
∑

T ∈Tk
m(2t)

P(FT )(1 − P(FT ))

≤
∑

T ,T ′∈Tk
m(2t)

T 	=T ′

((
1 + 2mδm log t

t

)2m log t

− 1

)
P(FT )P(FT ′)

+
∑

T ∈Tk
m(2t)

P(FT ). (4.34)

Since
(

1 + 2mδm log t

t

)2m log t

− 1 ≤ e
cm,δ

2
(log t)2

t − 1 ≤ cm,δ

(log t)2

t
, (4.35)

we have that (4.34) is at most

cm,δ

(log t)2

t

∑

T ,T ′∈Tk
m(2t)

T 	=T ′

P(FT )P(FT ′) + E
[
Z

(k)
m,δ(2t)

]

≤ cm,δ

(log t)2

t

∑

T ,T ′∈Tk
m(2t)

P(FT )P(FT ′) + E
[
Z

(k)
m,δ(2t)

]

= cm,δ

(log t)2

t
E

[
Z

(k)
m,δ(2t)

]2 + E
[
Z

(k)
m,δ(2t)

]
. (4.36)

�
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Appendix A

A.1 The Tails of the Degree Sequence

Lemma A.1 (The total degree of high degree vertices) Fix m ≥ 1 and δ > −m. Assume that

lt → ∞, as t → ∞ and that lt ≤ u1 = t
1

2(τ−1) (log t)− 1
2 . Then there exists a constant B > 0

such that with probability exceeding 1 − o(t−1),

∑

i:Di(t)≥lt

Di(t) ≥ Btl2−τ
t . (A.1)

Moreover, if N≥lt (t) = #{i ≤ t : Di(t) ≥ lt } is the number of vertices with degree at least lt ,
then, whp,

N≥lt (t) ≥ √
t . (A.2)

Proof We note that
∑

i:Di(t)≥lt

Di(t) ≥ ltN≥lt (t). (A.3)

In [23], detailed asymptotics for N≥lt (t) were proved for model (c) that we will survey now.
These asymptotics play a key role throughout the proof.

Firstly, it is shown that there exists a B1 such that uniformly for all lt ,

P
(|N≥lt (t) − E[N≥lt (t)]| ≥ B1

√
t log t

) = o(t−1). (A.4)

This proves a concentration bound on the number of vertices with at least a given degree.
The proof of this result follows the argument in [15], and holds for any of the models (a)–(c).

Secondly, with

Nlt (t) = #{i ≤ t : Di(t) = lt }, (A.5)

the total number of vertices of degree equal to lt , and with plt defined by

plt = (2 + δ/m)�(lt + δ)�(m + δ + 2 + δ/m)

�(m + δ)�(lt + 1 + δ + 2 + δ/m)
, lt ≥ m, (A.6)

so that pk ∼ k−τ with τ = 3 + δ/m, there exists a constant B2 such that

sup
l≥1

|E[Nlt (t)] − tplt | ≤ B2. (A.7)

For model (c), this is shown in [23], for model (a) this is shown in [41, Chap. 8]. This latter
proof can easily be adapted to deal with model (b) as well. In rather generality, results of
this kind (with the sharp bound in (A.7)) are proved in [28].
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Therefore, we obtain that, with probability exceeding 1 − o(t−1),

N≥lt (t) ≥ E[N≥lt (t)] − B1

√
t log t ≥ E[N≥lt (t)] − E[N≥2lt (t)] − B1

√
t log t

≥
2lt −1∑

l=lt

[tpl − B2] − B1

√
t log t ≥ B3t l

1−τ
t − B2lt − B1

√
t log t, (A.8)

for some B3 > 0. We now wish to pick lt such that t l1−τ
t is the dominating term in the right-

hand side of (A.8), i.e., lt /t1/τ → 0 and
√

t log t/tl1−τ
t → 0, as t → ∞. Note that 1

τ
≥ 1

2(τ−1)

for all τ > 2, so for u1 as in the statement of the lemma and lt ≤ u1, we find that (A.1) holds
with probability exceeding 1 − o(t−1) and that, whp, N≥lt (t) ≥ √

t . �

A.2 The Diameter of the Multinomial Graph

Lemma A.2 (Diameter multinomial graph) Let Hnt be the multinomial graph with parame-
ters defined in (3.9). Then, whp, the diameter of Hnt is bounded from above by the diameter
of the uniform Erdős-Rényi graph G(nt ,mt ), where the number mt of edges is equal to

mt = 1

2
et

(
1 − (1 − qt )

t
)
. (A.9)

Proof Observe that by definition of the multinomial graph, and with et = nt (nt − 1)/2,

Mnt =
et∑

i=1

I

[
t∑

j=1

Nj,i > 0

]

. (A.10)

We only have to show that, whp, the random number of edges Mnt dominates the determin-
istic number mt . This can be deduced from Chebychev’s inequality as follows.

From a straightforward calculation,

E[Mnt ] = et

(
1 − (1 − qt )

t
) = 2mt, (A.11)

and

Var(Mnt ) = e2
t

(
(1 − 2qt )

t − (1 − qt )
2t
) + et

(
(1 − qt )

t − (1 − 2qt )
t
)
. (A.12)

The first term is negative, and the second term can be bounded by et (1 − (1 − qt )
t ), so that

Var(Mnt ) ≤ et

(
1 − (1 − qt )

t
) = E[Mnt ] = 2mt, (A.13)

so that the variance is of the same order as the first moment. Applying the Chebychev in-
equality yields

P(Mnt < mt) ≤ P
(|Mnt − E[Mnt ]| > mt

) ≤ Var(Mnt )

m2
t

→ 0. (A.14)

�
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A.3 Proof of Lemma 3.9

We investigate the problem for model (a) first, the adaptation of the proof for model (b) is
rather straightforward and will be omitted. The proof for model (c) is slightly more involved
and is treated immediately after the proof for model (a).

We first note that, for models (a) and (b), the model for general m ≥ 1 is obtained from
the model for m = 1 by taking δ′ = δ/m and identifying groups of m vertices. For m = 1
and δ > −1, we shall show by induction on j , that for model (a)

P(Di(t) = j) ≤ Cj

�(t)�(i + �)

�(t + �)�(i)
, (A.15)

for all t ≥ i and j ≥ m, with � = (1 + δ)/(2 + δ) ∈ (0,1) and where Cj will be determined
in the course of the proof. Clearly, for every t ≥ i, for model (a),

P(Di(t) = 1) =
t∏

s=i+1

(
1 − 1 + δ

(2 + δ)(s − 1) + (1 + δ)

)
= �(t)�(i + �)

�(t + �)�(i)
, (A.16)

which initializes the induction hypothesis with C1 = 1.
To advance the induction, we let s ≤ t be the last time at which a vertex is added to i.

Then we have that

P(Di(t) = j) =
t∑

s=i+j−1

P(Di(s − 1) = j − 1)

× j − 1 + δ

(2 + δ)(s − 1) + 1 + δ
P(Di(t) = j |Di(s) = j). (A.17)

By the induction hypothesis, we have that

P(Di(s − 1) = j − 1) ≤ Cj−1
�(s − 1)�(i + �)

�(s − 1 + �)�(i)
. (A.18)

Moreover, analogously to (A.16), we have that

P(Di(t) = j |Di(s) = j) =
t∏

q=s+1

(
1 − j + δ

(2 + δ)(q − 1) + (1 + δ)

)

= �(t − j−1
2+δ

)�(s + �)

�(t + �)�(s − j−1
2+δ

)
. (A.19)

Combining (A.17), (A.18) and (A.19), we arrive at

P(Di(t) = j)

≤ Cj−1

t∑

s=i+j−1

�(s − 1)�(i + �)

�(s − 1 + �)�(i)

j − 1 + δ

(2 + δ)(s − 1) + (1 + δ)

�(t − j−1
2+δ

)�(s + �)

�(t + �)�(s − j−1
2+δ

)

= Cj−1
j − 1 + δ

2 + δ

�(i + �)

�(i)

�(t − j−1
2+δ

)

�(t + �)

t∑

s=i+j−1

�(s − 1)

�(s − j−1
2+δ

)
. (A.20)
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We note that, whenever l + b, l + 1 + a > 0 and a − b + 1 > 0,

t∑

s=l

�(s + a)

�(s + b)
= 1

a − b + 1

[
�(t + 1 + a)

�(t + b)
− �(l + a)

�(l − 1 + b)

]

≤ 1

a − b + 1

�(t + 1 + a)

�(t + b)
. (A.21)

Application of (A.21) for a = −1, b = − j−1
2+δ

, l = i + j − 1, so that a − b + 1 = j−1
2+δ

> 0
when j > 1, leads to

P(Di(t) = j) ≤ Cj−1
j − 1 + δ

j − 1

�(i + �)

�(i)

�(t)

�(t + �)
. (A.22)

Equation (A.22) advances the induction when we define

Cj = �(j + δ)

�(j)�(1 + δ)
, (A.23)

so that

Cj = j − 1 + δ

j − 1
Cj−1. (A.24)

For m > 1, inequality (A.15) for model (a) generalizes to

P(Di(t) = j) ≤ Cj

�(t)�(i + 1+δ′
2+δ′ )

�(t + 1+δ′
2+δ′ )�(i)

= Cj

�(t)�(i + m+δ
2m+δ

)

�(t + m+δ
2m+δ

)�(i)
. (A.25)

This completes the investigation of P(Di(t) = j) for model (a). In an identical fashion, for
model (b), we obtain for m = 1

P(Di(t) = j) ≤ Cj

�(t − �)�(i)

�(t)�(i − �)
, (A.26)

where again C1 = 1 and Cj satisfies (A.23). This generalizes to

P(Di(t) = j) ≤ Cj

�(t − m+δ
2m+δ

)�(i)

�(t)�(i − m+δ
2m+δ

)
. (A.27)

We omit further details for model (b).
For models (a) and (b) we can generalize the inequality for m = 1 to m > 1. Unfortu-

nately this fails for model (c), and we first adapt the argument. Recall that Di(t) is the degree
of vertex i at time t . We shall define Ei(t) such that Ei(t) ≤ Di(t) and Ei(t) grows by at
most one at each time step. The definition of Ei(t) is recursive. We let Ei(i) = Di(i) = m,
and, assuming we have shown that Di(t) = Ei(t) + Ri(t), where Ri(t) ≥ 0, we proceed at
time t + 1 as follows. We can increase Ei(t) only when the first edge of vertex t + 1 at-
taches to vertex i, and we do this with probability Ei(t)+δ

(2m+δ)t
. With probability Ri (t)

(2m+δ)t
, we keep

Ei(t + 1) = Ei(t) and we increase Ri(t) by one. For the other m − 1 edges, we increase
Ri(t) by one with probability Di(t)+δ

(2m+δ)t
. Then we clearly have that Ei(t + 1) ≤ Di(t + 1) if
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Ei(t) ≤ Di(t), since the difference between Di(t) and Ei(t) equals Ri(t), which is monoton-
ically increasing. Moreover, we have that Ei(t + 1) equals Ei(t) or Ei(t) + 1, and the latter
occurs with conditional probability

P(Ei(t + 1) = j |Ei(t) = j − 1) = j − 1 + δ

(2m + δ)t
. (A.28)

We now adapt the above argument for model (a) to the random variable Ei(t). Indeed, we
now use as an induction hypothesis that

P(Ei(t) = j) ≤ Cj

�(t − m+δ
2m+δ

)�(i)

�(t)�(i − m+δ
2m+δ

)
, (A.29)

where Cm = 1 and, for j > m,

Cj = j − 1 + δ

j − m
Cj−1. (A.30)

The verification of (A.29) is a straightforward adaptation of the one of (A.15).
We summarize the bounds in models (a)–(c): for all m ≥ 1, and i ∈ [t], j ≥ m,

P(Ei(t) = j) ≤ Cj

�(t − a1)�(i + a2)

�(t + a2)�(i − a1)
, (A.31)

where Ei(t) = Di(t) in models (a) and (b) and where a1 = 0 for model (a), while a1 = m+δ
2m+δ

for models (b)–(c), while a2 = m+δ
2m+δ

for model (a), while a2 = 0 for models (b)–(c), and, for
all models, Cj ≤ jp−1 for some p ≥ 1.

Consequently, we obtain

P(Di(t) ≤ j) ≤ jp �(t − a1)�(i + a2)

�(t + a2)�(i − a1)
. (A.32)

We finally use (A.32) to complete the proof of Lemma 3.9. Take 0 < b <
a1+a2

a1+a2+1 = m+δ
3m+2δ

,
then, by Boole’s inequality,

P
(∃i ≤ tb : Di(t) ≤ (log t)σ

) ≤
tb∑

i=1

P
(
Di(t) ≤ (log t)σ

)

≤ (log t)σp �(t − a1)

�(t + a2)

tb∑

i=1

�(i + a2)

�(i − a1)

≤ (log t)σp(a1 + a2 + 1)−1 �(t − a1)

�(t + a2)

�(tb + a2 + 1)

�(tb − a1)

= o(1). (A.33)

This completes the proof of Lemma 3.9. �

A.4 Late Vertices Have Small Degree

Recall the definition of the core Coret in (3.1), where we take σ > 1. In the following
theorem we will prove that, for models (a)–(c), all vertices with large degree will be early
vertices. We need this result to prove Theorem 1.7.
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Proposition A.3 (Late vertices have small degree) Fix m ≥ 2, δ > −m and σ > 1. Then,
Core2t ⊆ [t] whp.

Proof Note that

P
(
Core2t ⊆ [t]) ≥ 1 −

2t∑

i=t+1

P
(
Di(2t) ≥ (log 2t)σ

)

≥ 1 −
2t∑

i=t+1

P
(
Dt(2t) ≥ (log 2t)σ

)

= 1 − tP
(
Dt(2t) ≥ (log 2t)σ

)
, (A.34)

because vertex t is more likely to have a large degree than vertices added after time t . In
Lemma A.4 we will show that P(Dt(2t) ≥ (log 2t)σ ) = o( 1

t
), so that P(Core2t ⊆ [t]) ≥

1 − o(1). �

Lemma A.4 (Tails of degree distribution) Fix m ≥ 2, δ > −m and σ > 1. Then,

P
(
Dt(2t) ≥ (log 2t)σ

) = o(1/t). (A.35)

Proof We investigate the problem for models (a) and (b) first, the adaptation for model
(c) will be discussed later. As noted in Sect. 1, for models (a) and (b), Gm,δ(2t) can be
constructed from G1,δ′(2mt), with δ′ = δ/m. We will include the superscripts to avoid con-
fusion. Thus identify, for i ∈ [2t], vertices ((i − 1)m + 1)(1), . . . , (im)(1) in G1,δ′(2mt) with
vertex i(m) in Gm,δ(2t). So (A.35) is equivalent to

P
(
D((t−1)m+1)(1) (2mt) + · · · + D(tm)(1) (2mt) ≥ (log 2t)σ

) = o(1/t). (A.36)

We will now color the vertices and edges in the following way. Color the vertices
1(1), . . . , ((t − 1)m)(1) and all edges between these vertices blue and color the vertices
((t − 1)m + 1)(1), . . . , (tm)(1) and the m edges that are attached to them at time mt red.
When a vertex, that was added after time mt connects to a blue (red) vertex also color that
vertex and its edge blue (red). Color vertices with a self-loop and its edge blue. Then, at
time 2mt , the total degree of vertices ((t − 1)m + 1)(1), . . . , (tm)(1) is at most equal to the
number of red edges plus m, because no blue edges are connected to these red vertices, and
all red edges are connected with at most one endpoint to these vertices. The only exception
are the first m red edges, which might connect with both endpoints to these vertices, hence
we have to add m to the number of red edges. Thus,

P
(
D((t−1)m+1)(1) (2mt) + · · · + D(tm)(1) (2mt) ≥ (log 2t)σ

)

≤ P
(
#{red edges} + m ≥ (log 2t)σ

)
. (A.37)

Since we will bound the right-hand side of the formula above, it is allowed to increase
the probability of attaching to a red vertex, or, equivalently, to decrease the probability of
attaching to a blue vertex. It is also allowed to increase the total degree of the red vertices,
or to decrease the total degree of the blue vertices. All this will only increase the probability
of the number of red edges being large.
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Therefore, we are allowed to assume that the first m red edges are all self-loops. Further,
we will not allow for self-loops after time t , which will increase the probability of attaching
to a red vertex in models (a) and (b), in model (c) nothing changes. When we consider
model (c), we see that the degrees should only be updated after each mth vertex has been
added. For j ≥ mt , no more than m edges and vertices can be added before updating the
degrees, so

P
(
(j + 1)(1)connects to a red vertex

∣∣G(c)

1,δ′(j)
)

=
∑

v(1)red(Dv(1) (m�j/m�) + δ′)
m�j/m�(2 + δ′)

≤
∑

v(1)red(Dv(1) (j) + δ′)
j (2 + δ′) − m(2 + δ′)

. (A.38)

Thus, we are allowed to update the degrees after adding each vertex, but then we have to
lower the total weight that blue vertices and edges contribute to the connecting probabilities
by m(2 + δ′). The above bound on the connecting probabilities also holds for models (a)
and (b).

Since we are only interested in the number of red and blue vertices and edges, the prob-
lem reduces to the following Pólya urn scheme. Let there be an urn with, at time s, S1(s) red
balls, corresponding to the total weight that red vertices and edges contribute to the connect-
ing probabilities, and S2(s) blue balls, corresponding to the lowered total weight that blue
vertices and edges contribute to the connecting probabilities. At time s = 0 we will start
with S1(0) = m(2 + δ′) and S2(0) = m(t − 1)(2 + δ′) − m(2 + δ′). We then successively
take one ball proportional to the number of balls of a certain color, and replace it together
with another 2 + δ′ balls of the same color. This corresponds to attaching a new vertex to a
vertex of that color.

So S1(mt)

2+δ′ has the same distribution as the number of red edges at time 2mt . Consequently,

P
(
Dt(m) (2t) ≥ (log 2t)σ

) ≤ P

(
S1(mt)

2 + δ′ + m ≥ (log 2t)σ

)
. (A.39)

To analyze the probability on the right-hand side, we make use of De Finetti’s Theorem
[26]. This theorem states that for an infinite sequence of exchangeable random variables
{Xi}∞

i=1,Xi ∈ {0,1}, there exists a random variable U with P(U ∈ [0,1]) = 1, such that for
all 1 ≤ k ≤ n,

P
(
X1 = · · · = Xk = 1,Xk+1 = 0, . . . ,Xn = 0

) = E
[
Uk(1 − U)n−k

]
. (A.40)

The random variable U can be computed explicitly. Note that this implies that

P

(
n∑

i=1

Xi = k

)

= E[P(BIN(n,U) = k|U)]. (A.41)

Let Xi denote the indicator that the ith ball drawn in the Pólya urn scheme described
above is red. As shown in [41, Sect. 11.1], {Xi}∞

i=1 is an infinite exchangeable sequence.
Note that

S1(s) = (2 + δ′)m + (2 + δ′)
s∑

i=1

Xi. (A.42)
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Hence,

P

(
S1(mt)

2 + δ′ + m ≥ (log 2t)σ

)
= E[ψ(U)], (A.43)

where 0 ≤ ψ(u) = P(BIN(mt,u) ≥ (log 2t)σ − 2m) ≤ 1.
Now observe from [29] that

ψ(u) ≤ e−(log 2t)σ +2m, (A.44)

whenever u is such that 7mtu ≤ (log 2t)σ −2m. We define g(t) = ((log 2t)σ −2m)/(7(mt)).
Since,

E[ψ(U)] = E[ψ(U)|U ≤ g(t)]P(U ≤ g(t)) + E[ψ(U)|U > g(t)]P(U > g(t))

≤ ψ(g(t)) + P(U > g(t)), (A.45)

we obtain, according to (A.44),

P

(
S1(mt)

2 + δ′ + m ≥ (log 2t)σ

)
≤ e−(log 2t)σ +2m + P(U > g(t))

= o

(
1

t

)
+ P(U > g(t)). (A.46)

It remains to show that also P(U > g(t)) = o( 1
t
). It turns out that U has a Beta-distribution

with parameters α = m and β = m(t − 2) ([41]), so α,β > 1. Thus we have that the prob-
ability density function of U is unimodular, with its turning point at t = α−1

α+β−2 ([45]). It is

easy to verify that g(t) ≥ α−1
α+β−2 , for t sufficiently large, so that

P(U > g(t)) ≤ (1 − g(t))
�(α + β)

�(α)�(β)
(g(t))α−1(1 − g(t))β−1

≤ �(α + β)

�(α)�(β)
(1 − g(t))β . (A.47)

Using Stirling’s formula (see e.g., [1]), one can show that there exists a constant C > 0, such
that (A.47) is at most

C
βα

�(α)
(1 − g(t))β ≤ C(mt)m

(
1 − (log 2t)σ

8m(t − 2)

)m(t−2)

≤ C(mt)me−(log 2t)σ /8 = o(1/t), (A.48)

because σ > 1.
Note that we in fact proved that P(Dt(m) (2t) ≥ (log 2t)σ ) = o(t−γ ), for any constant γ . �
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