309 research outputs found

    ANTIGENIC DIFFERENCES BETWEEN HEMOPOIETIC STEM CELLS AND MYELOID PROGENITORS

    Get PDF
    Bone marrow contains pluripotent stem cells which give rise to colonies when injected into irradiated syngenic hosts as well as more differentiated progenitor cells of the myeloid cell which are able to form colonies in vitro. Antisera against brain is known to contain antistem cell antibody. The present experiments were designed to determine if the myeloid progenitor cell still expresses the stem cell antigen. Bone marrow cells were treated with antibrain antiserum plus complement and then survival of stem cells was determined by injection into irradiated hosts. Survival of myeloid progenitor cells was determined by culturing the cells in vitro. It was found that stem cells were eliminated by the antiserum but that myeloid progenitors were not. Inefficient in vitro lysis was ruled out as the reason for this difference since in vitro colonies were not reduced when the cells were treated with anti-immunoglobulin or after passage through an irradiated host. In the differentiation from stem cell to myeloid progenitor there is an associated surface antigen change

    A dual-fluorescence reporter system for high-throughput clone characterization and selection by cell sorting

    Get PDF
    Molecular biology critically depends upon the isolation of desired DNA sequences. Flow cytometry, with its capacity to interrogate and sort more than 50 000 cells/s, shows great potential to expedite clone characterization and isolation. Intrinsic heterogeneity of protein expression levels in cells limits the utility of single fluorescent reporters for cell-sorting. Here, we report a novel dual-fluorescence strategy that overcomes the inherent limitations of single reporter systems by controlling for expression variability. We demonstrate a dual-reporter system using the green fluorescent protein (GFP) gene fused to the Discosoma red fluorescent protein (DsRed) gene. The system reports the successful insertion of foreign DNA with the loss of DsRed fluorescence and the maintenance of GFP fluorescence. Single cells containing inserts are readily recognized by their altered ratios of green to red fluorescence and separated using a high-speed cell-sorter for further processing. This novel reporter system and vector were successfully validated by shotgun library construction, cloned sequence isolation, PCR amplification and DNA sequencing of cloned inserts from bacteria after cell-sorting. This simple, robust system can also be adapted for diverse biosensor assays and is amenable to miniaturization. We demonstrated that dual-fluorescence reporting coupled with high-speed cell-sorting provides a more efficient alternative to traditional methods of clone isolation

    Initial results of in vivo non-invasive cancer imaging in the human breast using near-infrared photoacoustics

    Get PDF
    Near-infrared photoacoustic images of regions-of-interest in 4 of the 5 cases of patients with symptomatic breasts reveal higher intensity regions which we attribute to vascular distribution associated with cancer. Of the 2 cases presented here, one is especially significant where benign indicators dominate in conventional radiological images, while photoacoustic images reveal vascular features suggestive of malignancy, which is corroborated by histopathology. The results show that photoacoustic imaging may have potential in visualizing certain breast cancers based on intrinsic optical absorption contrast. A future role for the approach could be in supplementing conventional breast imaging to assist detection and/or diagnosis.\ud \u

    In Situ Instrumentation

    Get PDF

    Dynamics of <em>Prochlorococcus </em>Diversity and Photoacclimation During Short-Term Shifts in Water Column Stratification at Station ALOHA

    Get PDF
    \ua9 Copyright \ua9 2018 Thompson, van den Engh, Ahlgren, Kouba, Ward, Wilson and Karl.The cyanobacterium Prochlorococcus is the dominant phototroph in surface waters of the vast oligotrophic oceans, the foundation of marine food webs, and an important component of global biogeochemical cycles. The prominence of Prochlorococcus across the environmental gradients of the open ocean is attributed to its extensive genetic diversity and flexible chlorophyll physiology, enabling light capture over a wide range of intensities. What remains unknown is the balance between temporal dynamics of genetic diversity and chlorophyll physiology in the ability of Prochlorococcus to respond to a variety of short (approximately 1 day) and longer (months to year) changes in the environment. Previous field research established depth-dependent Prochlorococcus single cell chlorophyll distributions in the North Pacific Subtropical Gyre. Here, we examined whether the shifts in chlorophyll distributions correspond to changes in Prochlorococcus genetic diversity (i.e., ecotype-level community structure) or photoacclimation of stable communities over short time intervals. We report that community structure was relatively stable despite abrupt shifts in Prochlorococcus chlorophyll physiology, due to unexpected physiological plasticity of high-light adapted Prochlorococcus ecotypes. Through comparison with seasonal-scale changes, our data suggest that variability on daily scales triggers shifts in Prochlorococcus photoacclimation, while seasonal-scale dynamics trigger shifts in community structure. Together, these data highlight the importance of incorporating the process of photoacclimation and chlorophyll dynamics into interpretations of phytoplankton population dynamics from chlorophyll data as well as the importance of daily-scale variability to Prochlorococcus ecology

    Supplier selection with rank reversal in public tenders

    Get PDF
    For supplier selection in the public sector, the Weighted Sum Model is often used in combination with relative scoring methods that allow rank reversal. With rank reversal we refer to a changed order in the ranking of bids leading to a new winner, after removing or adding a non-optimal bid that does not win the original tender. In practice, an important reason indicated by practitioners for using methods that allow rank reversal is that it would rarely occur in practice. Based on an analysis of 303 Dutch public tenders, this research shows this is not true. In about 1 out of 5 the tenders, rank reversal occurs after adding non-optimal fictional bids to tenders that do not have quality thresholds. After removing bids, the rate is about 1 out of 40 if a curved relative scoring method is used. In addition, the research shows that rank reversal rates increase when (i) there is no quality threshold, (ii) the number of bids increases, (iii) bid price variance increases, and (iv) price weights are not very low or high. We argue that relative scoring methods that allow rank reversal should not be used in public procurement, or otherwise only in exceptional cases, as it conflicts with public procurement principles and leads to reduced overall bid value

    Appearance of breast cysts in planar geometry photoacoustic mammography using 1064-nm excitation

    Get PDF
    In the search for improved imaging modalities for detection and diagnosis of breast cancer, a high negative prediction value is also important. Photoacoustic (optoacoustic) imaging is a relatively new technique that has high potential for visualizing breast malignancies, but little is known about the photoacoustic appearance of benign lesions. In this work, we investigate the visibility of benign breast cysts in forward-mode photoacoustic mammography using 1064-nm light, as currently applied in the Twente photoacoustic mammoscope. Results from (Monte Carlo and k-wave) simulations and phantom measurements were used to interpret results from patient measurements. There was a strong agreement among the results from simulations, phantom, and patient measurements. Depending on the absorption contrast between cyst and breast tissue, cysts were visible as either one or two confined high-contrast areas representing the front and the back of the cyst, respectively. This edge enhancement is most likely the consequence of the local sudden change in the absorbed energy density and Grüneisen coefficients. Although the current forward-mode single-wavelength photoacoustic mammoscope cannot always unambiguously discriminate cysts from malignancies, this study reveals specific features of cysts compared to malignancies, which can be exploited for discrimination of the two abnormalities in future modifications of the image

    Breast imaging using the Twente Photoacoustic Mammoscope (PAM): new clinical measurements

    Get PDF
    Worldwide, yearly about 450,000 women die from the consequences of breast cancer. Current imaging modalities are not optimal in discriminating benign from malignant tissue. Visualizing the malignancy-associated increased hemoglobin concentration might significantly improve early diagnosis of breast cancer. Since photoacoustic imaging can visualize hemoglobin in tissue with optical contrast and ultrasound-like resolution, it is potentially an ideal method for early breast cancer imaging. The Twente Photoacoustic Mammoscope (PAM) has been developed specifically for breast imaging. Recently, a large clinical study has been started in the Medisch Spectrum Twente in Oldenzaal using PAM. In PAM, the breast is slightly compressed between a window for laser light illumination and a flat array ultrasound detector. The measurements are performed using a Q-switched Nd:YAG laser, pulsed at 1064 nm and a 1 MHz unfocused ultrasound detector array. Three-dimensional data are reconstructed using a delay and sum reconstruction algorithm. Those reconstructed images are compared with conventional imaging and histopathology. In the first phase of the study 12 patients with a malignant lesion and 2 patients with a benign cyst have been measured. The results are used to guide developments in photoacoustic mammography in order to pave the way towards an optimal technique for early diagnosis of breast cancer
    • …
    corecore