16 research outputs found

    Experimental Pandemic (H1N1) 2009 Virus Infection of Cats

    Get PDF
    To demonstrate that pandemic (H1N1) 2009 virus may cause respiratory disease in cats, we intratracheally infected cats. Diffuse alveolar damage developed. Seroconversion of sentinel cats indicated cat-to-cat virus transmission. Unlike in cats infected with highly pathogenic avian influenza virus (H5N1), extrarespiratory lesions did not develop in cats infected with pandemic (H1N1) 2009 virus

    Infection of ferrets with wild type-based recombinant canine distemper virus overwhelms the immune system and causes fatal systemic disease

    Get PDF
    Canine distemper virus (CDV) causes systemic infection resulting in severe and often fatal disease in a large spectrum of animal host species. The virus is closely related to measles virus and targets myeloid, lymphoid, and epithelial cells, but CDV is more virulent and the infection spreads more rapidly within the infected host. Here, we aimed to study the pathogenesis of wild-type CDV infection by experimentally inoculating ferrets with recombinant CDV (rCDV) based on an isolate directly obtained from a naturally infected raccoon. The recombinant virus was engineered to express a fluorescent reporter protein, facilitating assessment of viral tropism and virulence. In ferrets, this wild type-based rCDV infected myeloid, lymphoid, and epithelial cells, and the infection resulted in systemic dissemination to multiple tissues and organs, especially those of the lymphatic system. High infection percentages in immune cells resulted in depletion of these cells both from circulation and from lymphoid tissues. The majority of CDV-infected ferrets reached their humane endpoints within 20 d and had to be euthanized. In that period, the virus also reached the central nervous system in several ferrets, but we did not observe the development of neurological complications during the study period of 23 d. Two out of 14 ferrets survived CDV infection and developed neutralizing antibodies. We show for the first time the pathogenesis of a non-adapted wild type-based rCDV in ferrets. IMPORTANCE Infection of ferrets with recombinant canine distemper virus (rCDV) expressing a fluorescent reporter protein has been used as proxy to understand measles pathogenesis and immune suppression in humans. CDV and measles virus use the same cellular receptors, but CDV is more virulent, and infection is often associated with neurological complications. rCDV strains in current use have complicated passage histories, which may have affected their pathogenesis. Here, we studied the pathogenesis of the first wild type-based rCDV in ferrets. We used macroscopic fluorescence to identify infected cells and tissues; multicolor flow cytometry to determine viral tropism in immune cells; and histopathology and immunohistochemistry to characterize infected cells and lesions in tissues. We conclude that CDV often overwhelmed the immune system, resulting in viral dissemination to multiple tissues in the absence of a detectable neutralizing antibody response. This virus is a promising tool to study the pathogenesis of morbillivirus infections.</p

    Inoculation of raccoons with a wild-type-based recombinant canine distemper virus results in viremia, lymphopenia, fever, and widespread histological lesions

    Get PDF
    Raccoons are naturally susceptible to canine distemper virus (CDV) infection and can be a potential source of spill-over events. CDV is a highly contagious morbillivirus that infects multiple species of carnivores and omnivores, resulting in severe and often fatal disease. Here, we used a recombinant CDV (rCDV) based on a full-genome sequence detected in a naturally infected raccoon to perform pathogenesis studies in raccoons. Five raccoons were inoculated intratracheally with a recombinant virus engineered to express a fluorescentreporter protein, and extensive virological, serological, histological, and immunohistochemical assessments were performed at differenttime points post inoculation. rCDV-infected white blood cells were detected as early as 4 days post inoculation (dpi). Raccoon necropsies at 6 and 8 dpi revealed replication in the lymphoid tissues, preceding spread into peripheral tissues observed during necropsies at 21 dpi. Whereas lymphocytes, and to a lesser extent myeloid cells, were the main target cells of CDV at early time points, CDV additionally targeted epithelia at 21 dpi. At this later time point, CDV-infected cells were observed throughout the host. We observed lymphopenia and lymphocyte depletion from lymphoid tissues after CDV infection, in the absence of detectable CDV neutralizing antibodies and an impaired ability to clear CDV, indicating that the animals were severely immunosuppressed. The use of a wild-type-based recombinant virus in a natural host species infection study allowed systematic and sensitive assessment of antigen detection by immunohistochemistry, enabling further comparative pathology studies of CDV infection in differentspecies.</p

    Cold atoms in space: community workshop summary and proposed road-map

    Get PDF
    We summarise the discussions at a virtual Community Workshop on Cold Atoms in Space concerning the status of cold atom technologies, the prospective scientific and societal opportunities offered by their deployment in space, and the developments needed before cold atoms could be operated in space. The cold atom technologies discussed include atomic clocks, quantum gravimeters and accelerometers, and atom interferometers. Prospective applications include metrology, geodesy and measurement of terrestrial mass change due to, e.g., climate change, and fundamental science experiments such as tests of the equivalence principle, searches for dark matter, measurements of gravitational waves and tests of quantum mechanics. We review the current status of cold atom technologies and outline the requirements for their space qualification, including the development paths and the corresponding technical milestones, and identifying possible pathfinder missions to pave the way for missions to exploit the full potential of cold atoms in space. Finally, we present a first draft of a possible road-map for achieving these goals, that we propose for discussion by the interested cold atom, Earth Observation, fundamental physics and other prospective scientific user communities, together with the European Space Agency (ESA) and national space and research funding agencies.publishedVersio

    Pathological features of West Nile and Usutu virus natural infections in wild and domestic animals and in humans: A comparative review

    Get PDF
    Mosquito-borne flaviviruses are emerging pathogens with zoonotic potential. Due to the recent climate and environmental changes, they are spreading across Europe, becoming a major threat for public and veterinary health. West Nile virus (WNV) and Usutu virus (USUV) are arboviruses that are responsible for multiple disease outbreaks in different species of birds, reptiles, and mammals, including humans. This review reports and compares the clinical signs as well as the gross and microscopic pathological features during natural infection with WNV and USUV in wild and domestic animals, as well as in humans. The main objective of this comparative review is to delineate the common features and the specific differences that characterize WNV- and USUV-induced diseases in each group of species and to highlight the main gaps in knowledge that could provide insight for further investigation on the pathogenesis and neurovirulence of these viruses

    The pathology of co-infection with Usutu virus and Plasmodium spp. in naturally infected Eurasian blackbirds (Turdus merula)

    Get PDF
    Usutu virus (USUV) is a mosquito-borne zoonotic flavivirus causing mortality in Eurasian blackbirds (Turdus merula) in Europe. In dead blackbirds, avian malaria co-infection due to mosquito-borne hemosporidians (e.g., Plasmodium spp.) has been reported. In humans, a similar co-infection of a flavivirus, Dengue virus, and Plasmodium spp. is causing increased severity of clinical disease. Currently, the effects of co-infection of arboviruses and hemosporidians in blackbirds remain unclear. This study investigates the rate of USUV and Plasmodium spp. co-infection in found-dead blackbirds (n = 203) from 2016 to 2020 in the Netherlands. Presence of Plasmodium spp. was evaluated by cytology (43/203; 21,2%), histopathology (94/186; 50,5%) and qPCR (179/203; 88,1%). The severity of histological lesions in USUV and Plasmodium spp. co-infected dead blackbirds (121/203; 59,6%) were compared with those in Plasmodium spp. single-infected cases. Additionally, since no knowledge is present on the infection rate on live birds and mosquitoes in the Netherlands, a small group of live blackbirds (n = 12) and selected in the field-collected mosquito pools (n = 96) in 2020 were tested for the presence of Plasmodium spp. The latter was detected in the tested live blackbirds by qPCR (8/10; 80%), and cytology (3/11; 27,3%) and in the mosquito pools by qPCR (18/96; 18,7%). For this study, co-infection between USUV and Plasmodium spp. was observed only in the dead blackbirds. The high Plasmodium spp. presence, associated with lower lesions score, in single infected found dead birds suggest a predominantly smaller pathogenic role as single agent. On the other hand, the higher histological lesion scores observed in USUV and Plasmodium spp. co-infected birds suggests a major pathogenic role for the virus or an increased severity of the lesions due to a possible interplay of the two agents

    Evaluation of the use of alternative sample types for mosquito-borne flavivirus surveillance: Using Usutu virus as a model

    No full text
    Wild birds are reservoirs of several zoonotic arboviruses including West Nile virus (WNV) and Usutu virus (USUV), and are often monitored as indicators for virus introduction and spread. To optimize the bird surveillance for arboviruses in the Netherlands and to explore the possibilities for citizen science in surveillance, we investigated the suitability of using alternative sample types from live and dead birds. The sensitivity of molecular detection via RT-PCR of viral RNA in feather, heart, lung, throat and cloaca swabs from dead birds, and serum, dried blood spots (DBS) and throat and cloaca swabs from live birds were compared. IgY antibody detection was also assessed from DBS relative to serum on protein-microarray and virus neutralization test. Feathers showed a high detection sensitivity for USUV RNA in both live and dead birds, and no significant decrease was observed in the RNA loads in the feathers after being stored dry at room temperature for 43 days. Additionally, viral RNAs extracted from feathers of day 0 and 43 were successfully sequenced. The results indicated no statistical significant difference in sensitivity and viral loads detection in heart, spleen, and lung relative to corresponding brain samples in dead birds. In live birds, viral RNA loads did not differ between throat and cloaca swabs. This study identified less-invasive sample types that allows involvement of citizens in collecting samples from wild birds for arbovirus surveillance. Sensitivity and specificity of DBS-based antibody detections were significantly lower and therefore need optimization

    Taenia martis Neurocysticercosis-Like Lesion in Child, Associated with Local Source, the Netherlands

    No full text
    A neurocysticercosis-like lesion in an 11-year-old boy in the Netherlands was determined to be caused by the zoonotic Taenia martis tapeworm. Subsequent testing revealed that 15% of wild martens tested in that region were infected with T. martis tapeworms with 100% genetic similarity; thus, the infection source was most likely local

    Detection of west nile virus in a common whitethroat (curruca communis) and culex mosquitoes in the Netherlands, 2020

    No full text
    On 22 August, a common whitethroat in the Netherlands tested positive for West Nile virus lineage 2. The same bird had tested negative in spring. Subsequent testing of Culex mosquitoes collected in August and early September in the same location generated two of 44 positive mosquito pools, providing first evidence for enzootic transmission in the Netherlands. Sequences generated from the positive mosquito pools clustered with sequences that originate from Germany, Austria and the Czech Republic
    corecore