51 research outputs found

    Enteroendocrine cells switch hormone expression along the crypt-to-villus BMP signalling gradient.

    Get PDF
    Enteroendocrine cells (EECs) control a wide range of physiological processes linked to metabolism1. We show that EEC hormones are differentially expressed between crypts (for example, Glp1) and villi (for example, secretin). As demonstrated by single-cell mRNA sequencing using murine Lgr5+ cell-derived organoids, BMP4 signals alter the hormone expression profiles of individual EECs to resemble those found in the villus. Accordingly, BMP4 induces hormone switching of EECs migrating up the crypt-villus axis in vivo. Our findings imply that EEC lineages in the small intestine exhibit a more flexible hormone repertoire than previously proposed. We also describe a protocol to generate human EECs in organoids and demonstrate a similar regulation of hormone expression by BMP signalling. These findings establish alternative strategies to target EECs with therapeutically relevant hormone production through BMP modulation

    Gut-derived bacterial flagellin induces beta-cell inflammation and dysfunction

    Get PDF
    Hyperglycemia and type 2 diabetes (T2D) are caused by failure of pancreatic beta cells. The role of the gut microbiota in T2D has been studied, but causal links remain enigmatic. Obese individuals with or without T2D were included from two independent Dutch cohorts. Human data were translated in vitro and in vivo by using pancreatic islets from C57BL6/J mice and by injecting flagellin into obese mice. Flagellin is part of the bacterial locomotor appendage flagellum, present in gut bacteria including Enterobacteriaceae, which we show to be more abundant in the gut of individuals with T2D. Subsequently, flagellin induces a pro-inflammatory response in pancreatic islets mediated by the Toll-like receptor (TLR)-5 expressed on resident islet macrophages. This inflammatory response is associated with beta-cell dysfunction, characterized by reduced insulin gene expression, impaired proinsulin processing and stress-induced insulin hypersecretion in vitro and in vivo in mice. We postulate that increased systemically disseminated flagellin in T2D is a contributing factor to beta-cell failure in time and represents a novel therapeutic target.Peer reviewe

    Carnosine Attenuates the Development of both Type 2 Diabetes and Diabetic Nephropathy in BTBR ob/ob Mice

    Get PDF
    We previously demonstrated that polymorphisms in the carnosinase-1 gene (CNDP1) determine the risk of nephropathy in type 2 diabetic patients. Carnosine, the substrate of the enzyme encoded by this gene, is considered renoprotective and could possibly be used to treat diabetic nephropathy (DN). In this study, we examined the effect of carnosine treatment in vivo in BTBR (Black and Tan, BRachyuric) ob/ob mice, a type 2 diabetes model which develops a phenotype that closely resembles advanced human DN. Treatment of BTBR ob/ob mice with 4 mM carnosine for 18 weeks reduced plasma glucose and HbA1c, concomitant with elevated insulin and C-peptide levels. Also, albuminuria and kidney weights were reduced in carnosine-treated mice, which showed less glomerular hypertrophy due to a decrease in the surface area of Bowman's capsule and space. Carnosine treatment restored the glomerular ultrastructure without affecting podocyte number, resulted in a modified molecular composition of the expanded mesangial matrix and led to the formation of carnosine-acrolein adducts. Our results demonstrate that treatment with carnosine improves glucose metabolism, albuminuria and pathology in BTBR ob/ob mice. Hence, carnosine could be a novel therapeutic strategy to treat patients with DN and/or be used to prevent DN in patients with diabetes

    The BMP Antagonist Follistatin-Like 1 Is Required for Skeletal and Lung Organogenesis

    Get PDF
    Follistatin-like 1 (Fstl1) is a secreted protein of the BMP inhibitor class. During development, expression of Fstl1 is already found in cleavage stage embryos and becomes gradually restricted to mesenchymal elements of most organs during subsequent development. Knock down experiments in chicken and zebrafish demonstrated a role as a BMP antagonist in early development. To investigate the role of Fstl1 during mouse development, a conditional Fstl1 KO allele as well as a Fstl1-GFP reporter mouse were created. KO mice die at birth from respiratory distress and show multiple defects in lung development. Also, skeletal development is affected. Endochondral bone development, limb patterning as well as patterning of the axial skeleton are perturbed in the absence of Fstl1. Taken together, these observations show that Fstl1 is a crucial regulator in BMP signalling during mouse development

    Porcupine inhibitor suppresses paracrine Wnt-driven growth of Rnf43;Znrf3-mutant neoplasia

    No full text
    Rnf43 (RING finger protein 43) and Znrf3 (zinc/RING finger protein 3) (RZ) are two closely related transmembrane E3 ligases, encoded by Wnt target genes, that remove surface Wnt (wingless-int) receptors. The two genes are mutated in various human cancers. Such tumors are predicted to be hypersensitive to, yet still depend on, secreted Wnts. We previously showed that mutation of RZ in the intestine yields rapidly growing adenomas containing LGR5(+) (leucine-rich repeat-containing G-protein coupled receptor 5) stem cells and Wnt3-producing Paneth cells. We now show that removal of Paneth cells by Math1 mutation inhibits RZ(-/-) tumor formation. Similarly, deletion of Wnt3 inhibits tumorigenesis. Treatment of mice carrying RZ(-/-) intestinal neoplasia with a small molecule Wnt secretion inhibitor (porcupine inhibitor C59) strongly inhibited growth, whereas adjacent normal crypts remained intact. These results establish that paracrine Wnt secretion is an essential driver of RZ(-/-) tumor growth and imply that a therapeutic window exists for the use of porcupine inhibitors for RZ-mutant cancers

    Lgr5 intestinal stem cells have high telomerase activity and randomly segregate their chromosomes

    No full text
    This report reveals high telomerase activity and telomere length in dividing Lgr5-positive intestinal stem cells, features that decline during differentiation of stem cell progeny. Random segregation of chromosomes is observed, which is inconsistent with the “immortal strand” hypothesis

    De novo crypt formation and juvenile polyposis on BMP inhibition in mouse intestine

    No full text
    Little is known about the signaling mechanisms that determine the highly regular patterning of the intestinal epithelium into crypts and villi. With the use of mouse models, we show that bone morphogenetic protein (BMP)-4 expression occurs exclusively in the intravillus mesenchyme. Villus epithelial cells respond to the BMP signal. Inhibition of BMP signaling by transgenic expression of noggin results in the formation of numerous ectopic crypt units perpendicular to the crypt-villus axis. These changes phenocopy the intestinal histopathology of patients with the cancer predisposition syndrome juvenile polyposis (JP), including the frequent occurrence of intraepithelial neoplasia. Many JP cases are known to harbor mutations in BMP pathway genes. These data indicate that intestinal BMP signaling represses de novo crypt formation and polyp growt

    Adenomatous polyposis coli-deficient zebrafish are susceptible to digestive tract neoplasia

    No full text
    Truncation of the tumour suppressor adenomatous polyposis coli (APC) constitutively activates the Wnt/β-catenin signalling pathway. This event constitutes the primary transforming event in sporadic colorectal cancer in humans. Moreover, humans or mice carrying germline truncating mutations in APC develop large numbers of intestinal adenomas. Here, we report that zebrafish that are heterozygous for a truncating APC mutation spontaneously develop intestinal, hepatic and pancreatic neoplasias that are highly proliferative, accumulate β-catenin and express Wnt target genes. Treatment with the chemical carcinogen 7,12-dimethylbenz[a]anthracene accelerates the induction of these lesions. These observations establish apc-mutant zebrafish as a bona fide model for the study of digestive tract cancer
    corecore