1,240 research outputs found

    Economic Benefits of Intensive Insulin Therapy in Critically Ill Patients: The Targeted Insulin Therapy to Improve Hospital Outcomes (TRIUMPH) Project

    Get PDF
    OBJECTIVE—The purpose of this study was to analyze the economic outcomes of a clinical program implemented to achieve strict glycemic control with intensive insulin therapy in patients admitted to the intensive care unit (ICU)

    Modeling of Effect of Glucose Sensor Errors on Insulin Dosage and Glucose Bolus Computed by LOGIC-Insulin

    Full text link
    BACKGROUND: Effective and safe glycemic control in critically ill patients requires accurate glucose sensors and adequate insulin dosage calculators. The LOGIC-Insulin calculator for glycemic control has recently been validated in the LOGIC-1 randomized controlled trial. In this study, we aimed to determine the allowable error for intermittent and continuous glucose sensors, on the basis of the LOGIC-Insulin calculator. METHODS: A gaussian simulation model with a varying bias (0%-20%) and CV (-20% to +20%) simulated blood glucose values from the LOGIC-1 study (n = 149 patients) in 10 Monte Carlo steps. A clinical error grid system was developed to compare the simulated LOGIC-Insulin-directed intervention with the nominal intervention (0% bias, 0% CV). The severity of error measuring the clinical effect of the simulated LOGIC-Insulin intervention was graded as type B, C, and D errors. Type D errors were classified as acutely life-threatening (0% probability preferred). RESULTS: The probability of all types of errors was lower for continuous sensors compared with intermittent sensors. The maximum total error (TE), defined as the first TE introducing a type B/C/D error, was similar for both sensor types. To avoid type D errors, TEs <15.7% for intermittent sensors and <17.8% for continuous sensors were required. Mean absolute relative difference thresholds for type C errors were 7.1% for intermittent and 11.0% for continuous sensors. CONCLUSIONS: Continuous sensors had a lower probability for clinical errors than intermittent sensors at the same accuracy level. These simulations demonstrated the suitability of the LOGIC-Insulin control system for use with continuous, as well as intermittent, sensors.status: publishe
    corecore