95 research outputs found

    Interaction of a tin-based capillary porous structure with ITER/DEMO relevant plasma conditions

    Get PDF
    Sn filled capillary porous structures were exposed to high flux low temperature plasma conditions at the Pilot-PSI linear device. Enhanced erosion above that expected classically was investigated via spectroscopic observation of Sn0 emission from the plasma in front of the target surface while the surface temperature was monitored by both thermography and pyrometry. An anomalous erosion flux was observed as temperature increases, with onset for this occurrence varying strongly between different ion species. The results appear incompatible with existing ‘adatom’ models for the anomalous erosion flux. Further targets were exposed in turn to increasing heat fluxes and the heat removed determined from cooling water calorimetry, which was then compared to a solid Mo reference target. At high powers the total energy of the cooling water is reduced, indicating a shielding of the surface from the plasma heat flux by the vapour cloud in front.</p

    Plasma activation of N-2, CH4 and CO2: an assessment of the vibrational non-equilibrium time window

    Get PDF
    Vibrational excitation potentially enhances the energy efficiency of plasma dissociation of stable molecules and may open new routes for energy storage and process electrification. Electron, vibrational and rotational temperatures were measured by in situ Thomson and Raman scattering in order to assess the opportunities and limitations of the essential vibration-translation non-equilibria in N-2, CO2 and CH4 plasma. Electron temperatures of 1.1-2.8 eV were measured in N-2 and CH4. These are used to confirm predominant energy transfer to vibrations after an initial phase of significant electronic excitation and ionization. The vibrational temperatures initially exceed rotational temperatures by almost 8000 K in N-2, by 900 K in CO2, and by 300 K in CH4. Equilibration is observed at the 0.1 ms timescale. Based on the vibrational temperatures, the vibrational loss rates for different channels are estimated. In N-2, vibrational quenching via N atoms is identified as the dominant equilibration mechanism. Atomic nitrogen population reaches a mole fraction of more than 1%, as inferred from the afterglow emission decay, and explains a gas heating rate of 25 K mu s(-1). CH4 equilibration at 1200 K is predominantly caused by vibrational-translational relaxation in CH4-CH4 collisions. As for CO2, vibrational-translational relaxation via parent molecules is responsible for a large fraction of the observed heating, whereas product-mediated VT relaxation is not significantly contributing. It is suggested that electronic excitation, followed by dissociation or quenching contributes to the remaining heat generation. In conclusion, the time window to profit from vibrational excitation under the present conditions is limiting practical application.</p

    The importance of thermal dissociation in CO2 microwave discharges investigated by power pulsing and rotational Raman scattering

    Get PDF
    The input power of a CO2 microwave plasma is modulated at kHz rate in scans of duty cycle at constant average power to investigate gas heating dynamics and its relation to dissociation efficiency. Rotational temperature profiles obtained from rotational Raman scattering reveal peak temperatures of up to 3000 K, while the edge temperature remains cold (500 K). During the plasma \u27OFF\u27-period, the gas cools down convectively, but remains overall too hot to allow for strong overpopulation of vibrational modes (2200 K in the core). Fast optical imaging monitors plasma volume variations and shows that power density scales with peak power. As dissociation scales with observed peak rotational temperature, it is concluded that thermal processes dominate. A simple 0D model is constructed which explains how higher power density favors dissociation over radial energy transport. Thermal decomposition is reviewed in relation to quenching oxygen radicals with vibrationally excited CO2, to reflect on earlier reported record efficiencies of 90%.</p

    How the alternating degeneracy in rotational Raman spectra of CO2 and C2H2 reveals the vibrational temperature

    Get PDF
    The contribution of higher vibrational levels to the rotational spectrum of linear polyatomic molecules with a center of symmetry (CO2 and C2H2) is assessed. An apparent nuclear degeneracy is analytically formulated by vibrational averaging and compared to numerical averaging over vibrational levels. It enables inferring the vibrational temperature of the bending and asymmetric stretching modes from the ratio of even to odd peaks in the rotational Raman spectrum. The contribution from higher vibrational levels is already observable at room temperature as g e/o=0.96/0.04 for CO2 and g e/o=1.16/2.84 for C2H2. The use of the apparent degeneracy to account for higher vibrational levels is demonstrated on spectra measured for a CO2 microwave plasma in the temperature range of 300-3500 K, and shown to be valid up to 1500 K.</p

    A rotational Raman study under non-thermal conditions in a pulsed CO2 glow discharge

    Get PDF
    The implementation of \u27in situ\u27 rotational Raman spectroscopy is realized for a pulsed glow discharge in CO2 in the mbar range and is used to study the rotational temperature and molecular number densities of CO2, CO, and O2. The polarizability anisotropy of these molecules is required for extracting number densities from the recorded spectra and is determined for incident photons of 532 nm. The spatiotemporally-resolved measurements are performed in the same reactor and at equal discharge conditions (5-10 ms on-off cycle, 50 mA plasma current, 6.7 mbar pressure) as in recently published work employing \u27in situ\u27 Fourier transform infrared (FTIR) spectroscopy. The rotational temperature ranges from 394 K to 809 K from start to end of the discharge pulse and is constant over the length of the reactor. The discharge is demonstrated to be spatially uniform in gas composition, with a CO2 conversion factor of 0.15 ± 0.02. Rotational temperatures and molecular composition agree well with the FTIR results, while the spatial uniformity confirms the assumption made for the FTIR analysis of a homogeneous medium over the line-of-sight of absorption. Furthermore, the rotational Raman spectra of CO2 are related to vibrational temperatures through the vibrationally averaged nuclear spin degeneracy, which is expressed in the intensity ratio between even and odd numbered Raman peaks. The elevation of the odd averaged degeneracy above thermal conditions agrees well with the elevation of vibrational temperatures of CO2, acquired in the FTIR study

    Comparison of intra-articular injections of Hyaluronic Acid and Corticosteroid in the treatment of Osteoarthritis of the hip in comparison with intra-articular injections of Bupivacaine. Design of a prospective, randomized, controlled study with blinding of the patients and outcome assessors

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Although intra-articular hyaluronic acid is well established as a treatment for osteoarthritis of the knee, its use in hip osteoarthritis is not based on large randomized controlled trials. There is a need for more rigorously designed studies on hip osteoarthritis treatment as this subject is still very much under debate.</p> <p>Methods/Design</p> <p>Randomized, controlled trial with a three-armed, parallel-group design. Approximately 315 patients complying with the inclusion and exclusion criteria will be randomized into one of the following treatment groups: infiltration of the hip joint with hyaluronic acid, with a corticosteroid or with 0.125% bupivacaine.</p> <p>The following outcome measure instruments will be assessed at baseline, i.e. before the intra-articular injection of one of the study products, and then again at six weeks, 3 and 6 months after the initial injection: Pain (100 mm VAS), Harris Hip Score and HOOS, patient assessment of their clinical status (worse, stable or better then at the time of enrollment) and intake of pain rescue medication (number per week). In addition patients will be asked if they have complications/adverse events. The six-month follow-up period for all patients will begin on the date the first injection is administered.</p> <p>Discussion</p> <p>This randomized, controlled, three-arm study will hopefully provide robust information on two of the intra-articular treatments used in hip osteoarthritis, in comparison to bupivacaine.</p> <p>Trial registration</p> <p>NCT01079455</p

    Routine versus on demand removal of the syndesmotic screw; a protocol for an international randomised controlled trial (RODEO-trial)

    Get PDF
    Background: Syndesmotic injuries are common and their incidence is rising. In case of surgical fixation of the syndesmosis a metal syndesmotic screw is used most often. It is however unclear whether this screw needs to be removed routinely after the syndesmosis has healed. Traditionally the screw is removed after six to 12 weeks as it is thought to hamper ankle functional and to be a source of pain. Some studies however suggest this is only the case in a minority of patients. We therefore aim to investigate the effect of retaining the syndesmotic screw on functional outcome. Design: This is a pragmatic international multicentre randomised controlled trial in patients with an acute syndesmotic injury for which a metallic syndesmotic screw was placed. Patients will be randomised to either routine removal of the syndesmotic screw or removal on demand. Primary outcome is functional recovery at 12 months measured with the Olerud-Molander Score. Secondary outcomes are quality of life, pain and costs. In total 194 patients will be needed to demonstrate non-inferiority between the two interventions at 80% power and a significance level of 0.025 including 15% loss to follow-up. Discussion: If removal on demand of the syndesmotic screw is non-inferior to routine removal in terms of functional outcome, this will offer a strong argument to adopt this as standard practice of care. This means that patients will not have to undergo a secondary procedure, leading to less complications and subsequent lower costs.Peer reviewe

    Anatomy of the ankle ligaments: a pictorial essay

    Get PDF
    Understanding the anatomy of the ankle ligaments is important for correct diagnosis and treatment. Ankle ligament injury is the most frequent cause of acute ankle pain. Chronic ankle pain often finds its cause in laxity of one of the ankle ligaments. In this pictorial essay, the ligaments around the ankle are grouped, depending on their anatomic orientation, and each of the ankle ligaments is discussed in detail
    corecore