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Abstract. The contribution of higher vibrational levels to the rotational spectrum

of linear polyatomic molecules with a center of symmetry (CO2 & C2H2) is assessed.

An apparent nuclear degeneracy is analytically formulated by vibrational averaging

and compared to numerical averaging over vibrational levels. It enables inferring the

vibrational temperature of the bending and asymmetric stretching modes from the

ratio of even to odd peaks in the rotational Raman spectrum. The contribution from

higher vibrational levels is already observable at room temperature as g̃e/o = 0.96/0.04

for CO2 and g̃e/o = 1.16/2.84 for C2H2. The use of the apparent degeneracy to account

for higher vibrational levels is demonstrated on spectra measured for a CO2 microwave

plasma in the temperature range of 300 to 3500K, and shown to be valid up to 1500K.

1. introduction

Rotational Raman Spectroscopy is employed to measure the rotational temperature

and species densities in reactive gas mixtures such as combustion systems or

plasmas. The technique is often used on diatomic gases such as N2, H2, and

O2[Drake and Rosenblatt, 1978] for measuring the temperature in the gas mixture.

The spectrum of polyatomic molecules is typically too complex because of multiple

rotational constants, resulting in complicated line structures in the rotational

spectrum[Avila et al., 2003].

Our work concerns CO2 plasma-conversion. Here CO2 is the ma-

jority species, of which rotational and vibrational temperatures are to be

diagnosed[Barrett and Weber, 1970, Brehmer et al., 2015, Klarenaar et al., 2015]. For-

tunately CO2, as well as C2H2, are linear polyatomic molecules that only have a sin-

gle rotational constant and correspondingly a rotational spectrum similar to that of
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diatomic molecules[Herzberg, 1950]. Nevertheless, high temperature or a vibration-

rotation non-equilibrium requires the contribution of higher vibrational levels to be

taken into account, which is the subject of this work.

The first rotational Raman spectra in a CO2 plasma were recorded by Barrett and

Weber[Barrett and Weber, 1970]. Although the CO2-spectrum is commonly considered

to contain only even-J rotational lines, they noted that odd-J peaks may appear

due to the population of bending modes. With high enough spectral resolution,

this becomes visible even at room temperature[Altmann and Strey, 1972]. At lower

spectral resolution however, the population of odd-J levels could mistakenly be

interpreted as broadening of the even-J peaks. Numerical models have been developed

to account for the contribution of the vibrational levels to the rotational spectrum

for both CO2 [Schenk et al., 2005b, Schenk et al., 2005a, Vestin et al., 2008] and C2H2

[Bood et al., 2000]. However, at high (vibrational) temperature these models may have

to include the spectra of hundreds of vibrational levels which greatly increases the

computational power necessary for synthesis of the rotational Raman spectrum.

The explanation of the odd rotational lines appearing, lies in the symmetry of the

vibrational levels. At low temperature, only the ground vibrational level is populated.

In the ground state of CO2, even rotational levels have s-symmetry and a degeneracy

gs = 1, while odd rotational levels have an a-symmetry and a degeneracy ga = 0 For this

reason, at low temperature the odd rotational lines are absent in the spectrum. Higher

vibrational levels can have different symmetries resulting in even rotational levels that

can have a and odd rotational levels that can have s symmetry. For these vibrational

levels the degeneracy is also swapped correspondingly.

In this paper we show that the complexity of the CO2 and C2H2 spectrum can be

reduced to that of a diatomic rotational spectrum, in the sense that no explicit care has

to be taken for individual higher vibrational levels. A direct relation between the ratio

of even and odd-J rotational levels and the vibrational temperatures of the bending

and asymmetric stretch modes is deduced. It allows to extract vibrational temperature

information from rotational spectra simply from the ratio of even to odd J peaks. In

rotation-vibrational equilibrium systems this represents a fast and easy temperature

analysis. The methodology relies on an approximation of the average degeneracy, which

in turn determines the density of rotational states. It is therefore applicable to both

spontaneous rotational Raman scattering and rotational CARS.

2. Results

The analysis of the rotational spectrum will be performed in three different sections. In

section 2.1 the experimental rotational spectrum in CO2 is discussed. In section 2.2 the

apparent nuclear degeneracy g̃e/o, which determines the relative weights of even-J and

odd-J components of the spectrum, is derived. Finally in section 2.3 some properties of

g̃e/o will be discussed.
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Figure 1. Typical measured rotational Raman spectrum of CO2 at T fit
rot = 1375K

(orange). The fitted synthetic spectrum (black) is the sum of an even and odd-

J component (green and blue, respectively). The apparent nuclear degeneracy

determines the fraction of the odd component of this spectrum. In this case the

predicted fraction of the odd-J component was g̃o = 0.358 while the fit determined the

optimal value to be g̃fito = 0.350. The anomalous peaks at 87, 98, and 119 cm−1 are

due to noise from the intensifier.

2.1. High temperature rotational Raman spectrum in CO2 plasma

Rotational Raman spectra were measured in CO2 microwave plasma, which provided

temperatures ranging from 300 K to 3500 K in a setup that was described

previously[van Rooij et al., 2015, van den Bekerom et al., 2017]. Briefly, a 450 W

microwave source produced microwaves at 2.45 GHz that were guided to an applicator,

which was intersected by a quartz tube of 2 cm diameter containing the plasma.

CO2 was flowed at a rate of 2 slm at a pressure of 75 and 160 mbar. A 4W

Nd:YAG laser produces 6 ns pulses at a 10 Hz repetition rate with a wavelength of

532 nm. This laser beam was focused at the center of the plasma. The scattered

light was collected by a Triple Grating Spectrometer (TGS) to filter out the Rayleigh

peak[van de Sande and van der Mullen, 2002, Carbone and Nijdam, 2015]. A pair of

plano-convex lenses with a 95mm diameter and 600 mm focal distance were used to

image the scattered light on a 250 µm slit. The light is then collimated to illuminate

the first of three gratings with 1800 grooves per mm, resulting in a dispersion of 0.65 nm

mm−1. All lenses that were used were achromatic doublet lenses with the same diameter

of 95 mm and focal distance of 600mm. After the first grating the light is imaged onto

a 500 µm mask to block the Rayleigh line. The light is then collimated onto the second

grating, which spectrally recombines the light, after which the light is focusing on an

exit slit of 250 µm. Effectively, the first two gratings act as a notch filter for 532 nm.

The blocking window, defined as blocking at least 98% of the Rayleigh light, has a width

of 0.28 nm[van de Sande and van der Mullen, 2002]. The light is finally collimated onto

a third grating, after which it is imaged onto a 16.5 mm wide iCCD camera, resulting

in a 10 nm spectral window. This allows Raman shifts up to 130 cm−1 to be recorded

in both the Stokes and Anti-Stokes branches. In a single acquisition an axial distance

of about 11 mm can be recorded. To improve S/N, the raw spectra were axially binned
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into 6 bins. The spectra were fitted separately for the 6 bins and separately for the

Stokes and Anti-Stokes branches. The temperatures reported here are the average of

the Stokes and Anti-Stokes fit, which typically did not differ more than 5%. The spectra

of the highest temperatures were averaged for 20 minutes to achieve decent S/N. If a

TGS is not available, a linear polarization filter may be used to attenuate the Rayleigh

peak as well. Because the depolarization ratio of the Rayleigh line is small in CO2, this

will eliminate most of the Rayleigh signal, but at the cost of losing roughly half of the

rotational Raman signal as well[Penney et al., 1974, Baas and van den Hout, 1979].

A rotational Raman spectrum measured at 150 W average power and a pressure of

75 mbar is shown in figure 1. The rotational temperature was determined to be 1375

K. By comparing spectra measured under similar conditions, it was found that spurious

peaks appear randomly in the different spectra and thus cannot be due to spectral

features. The anomalous peaks at 87, 98, and 119 cm−1 are therefore likely due to noise

from the intensifier. From this spectrum it can be inferred that the rotational spectrum

has a non-zero odd-J component because of higher vibrational levels being populated,

as shall be motivated in section 2.2. Although the resolution was too low to completely

resolve the odd rotational peaks, the presence of odd peaks is apparent as a reduced

depth of the valleys between even peaks. The presence of odd-J rotational peaks is

quantified by fitting the spectrum with an even-J and an odd-J components, where the

weight of each component left as a fitting parameter:

I(ν) = g̃fite Ie(ν;T fitrot ) + g̃fito Io(ν;T fitrot ) (1)

With T fitrot the fitted rotational temperature, Ie and Io the even and odd component

of the spectrum, respectively, and g̃fite and g̃fito the fitted apparent nuclear degeneracies of

the even and odd-J levels respectively, with the constraint that g̃fite + g̃fito = gs + ga = 1

for CO2. Throughout the paper, the tilde will be used for apparent values and the

superscript fit for fitted parameters. Since g̃fite + g̃fito = 1 for CO2, the apparent

nuclear degeneracy can be directly used as the weighting factors for the even and odd

components of the spectrum.

2.2. Derivation of apparent degeneracy

Let us consider the origin of the odd peaks in detail with the purpose to link the

experimental values of g̃fite and g̃fito to vibrational excitation. The rotational energy

Fv(J) is generally a function of vibrational level and is given by:

Fv(J) = BvJ(J + 1) +DvJ
2(J + 1)2 (2)

where Bv is the rotational constant of level v and Dv is the corresponding centrifugal

distortion constant. Raman line positions are calculated from the term values Fv(J) as

ν(v, J) = Fv(J ± 2)− Fv(J), and depend on the vibrational level via Bv and Dv. If the

variation in Bv and Dv is small, the rotational spectrum can be approximated by using

the values for the vibrational ground state B0 and D0, i.e. Fv(J) = F0(J).
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For CO2, the maximum change of Bv relative to the ground state rotational constant

B0 is smaller than 3% [Rothman and Young, 1981] for all vibrational levels below 10,000

cm−1. For vibrational levels below 4,600 cm−1 this difference is only 1%. The rotational

constant of CO2 is thus assumed to be constant for different vibrational levels. Under

this assumption the rotational peak positions are only a function of the rotational

quantum J , regardless of their vibrational level. The observed line intensities at a Raman

shift ν(J) can thus be written as the sum of the rotational spectra of all vibrational

levels:

I(J) ∝
∑
v

nvgn,v(J)SJ,v exp−hcFv(J)

kTrot
(3)

Here nv is the vibrational level density, SJ,v is the scattering cross-section†, gn,v(J)

is the nuclear spin degeneracy of the vibrational level v, and Trot is the rotational

temperature. The value of gn,v(J) alternates between even and odd rotational level

for homonuclear diatomic molecules and linear molecules with a center of symmetry

(CO2, C2H2). Most importantly, this alternation may switch between vibrational levels

in polyatomic molecules. The impact of this changing degeneracy in the summation

of vibrational levels is illustrated in figure 2. Because the J-dependence of gn,v(J) is

only determined by whether J is even or odd, we will replace it by ge/o in the following,

where the subscript e is used for even-J and the subscript o is used for odd-J rotational

levels, respectively.

Since the individual rotational lines of different vibrational levels overlap, eq 3 can

be simplified by taking all terms that are only weakly dependent on the level v outside

of the summation. We then follow the approach of Vestin et al.[Vestin et al., 2008] and

assume that the polarizability anisotropy does not change for different vibrational levels,

i.e. a constant cross section for all levels SJ,v = SJ . This reduces eq 3 to:

I(J) ∝ n0g̃e/oSJ exp−hcF0(J)

kTrot
(4)

The subscript e and o are used for even and odd J rotational levels, respectively, and

we have defined the apparent nuclear degeneracies:

g̃e/o =
∑
v

nv
n0

ge/o,v (5)

We now move to the central argument of this paper, namely that this sum can be

evaluated analytically by rewriting in terms of partition functions for each vibrational

symmetry and applying the harmonic oscillator approximation. Details of this procedure

are given in appendix Appendix A. We then arrive at the most important result of this

paper, namely that the apparent nuclear degeneracies of CO2 and C2H2 can be expressed

in terms of their vibrational temperatures by:

CO2 : g̃e/o =
1

2
± 1

2

(
1− z2

1 + z2

)(
1− z3

1 + z3

)
(6)

† The factor (2J + 1) is included in SJ here.
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Figure 2. Synthetic spectra illustrating how the vibrational averaging produces odd

lines. A rotational spectrum I0 of a vibrational level with relative density 1
2 and

ge/o = 1/0 (blue) is added to spectrum I1 of another vibrational level with relative

density 1
4 and ge/o = 1/1 (green). The sum spectrum I0 + I1 (black) then has a

apparent nuclear degeneracy of g̃e/o = 0.75/0.25. The blue and green lines in the

bottom graph indicate the original I0 and I1 spectra.

C2H2 : g̃e/o = 2∓
(

1− z3

1 + z3

)(
1− z4

1 + z4

)(
1− z5

1 + z5

)
(7)

The top sign is used for even and the bottom sign is used for odd J , respectively.

The terms zν are the Boltzmann factors for normal mode ν with fundamental vibrational

frequency ωi referenced to the vibrational ground state (see table 1), and Ti the

vibrational temperature of normal mode i, described by:

zi = exp−hcωi
kTi

(8)

The accuracy of eq 6 and 7 is assessed by comparing the calculated g̃e/o with the fit

results g̃fite/o of fitted experimental spectra measured in our plasma reactor over a wide

temperature range. The values of g̃o and g̃fito are compared as a function of T fitrot in figure

3. For temperatures below 1500K there is good agreement between measurement and

analytical approximation. Above 1500K, measured apparent degeneracy g̃fito seems to

be consistently higher than the approximated value.
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Table 1. Fundamental vibrational frequencies for CO2 and C2H2[Herzberg, 1950].

Symmetric stretch values are also tabulated for completeness. For the Fermi-resonant

symmetric stretch in CO2, the unperturbed energy is listed[Courtoy, 1957].

Normal CO2 C2H2

mode

i ωi (cm−1) ωi (cm−1)

1 1341.5 (sym.) 3372.5 (sym.)

2 667.3 (bend.) 1973.5 (sym.)

3 2349.3 (asym.) 3294.85 (asym.)

4 611.70 (bend.)

5 729.15 (bend.)

An overestimation of g̃fito would indicate a vibrational non-equilibrium, but at

this high temperature the uncertainty is too high to be conclusive. The uncertainty

in this high temperature regime is increased because of peaks overlapping due to

increased temperature broadening, and reduced signal intensity due to low number

density. To illustrate the temperature dependence of the signal strength, rotational

spectra measured at 430K, 1380K and 2670K are plotted in figure 4. In this

figure it is clearly visible that at 2670K the random fluctuations are larger than

the alternating peak height of even and odd rotational peaks. While the spectra

shown were taken at the highest resolution possible in the current setup, increasing

the spectral resolution would facilitate the separation of even and odd peaks, making

this procedure more reliable. At high rotational numbers however, peaks will always

have some overlap because of the spread in rotational constants, discussed in section

3. Note that at higher resolution, the loss in signal intensity will have to be offset

by e.g. using a higher laser power or increased averaging. Another possible way to

increase the signal intensity may be to use a coherent scheme like rotational CARS

[Bood et al., 2000, Schenk et al., 2005b, Schenk et al., 2005a]. Instead of leaving g̃fito
as a free fitting parameter, in cases where thermal equilibrium is to be expected it is

better to replace g̃fite/o with g̃e/o in eq 1 to reduce the uncertainty in the fitted rotational

temperature T fitrot .

2.3. Properties of apparent degeneracy

Having established an explicit description for the apparent nuclear degeneracies, we

investigate the newly found relationship between g̃e/o and the vibrational temperature

of eq 8.

The first property to notice is that the apparent degeneracy is not affected by the

symmetric stretch temperature. Although this result is not directly clear by summation

of the spectra using eq 3, it is a direct result of the fact that all symmetric stretch levels

can only have the σ+
g symmetry. Since the nuclear degeneracy of a vibrational level

depends on the molecular symmetry, which does not change for any particular ν1 level,
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Figure 3. Comparison of the fraction of odd-J levels predicted by eq. 6 (black solid

line), and determined by the fit g̃fito (blue dots), respectively, as a function of rotational

temperature. The highest possible fraction for Boltzmann distributed vibrational levels

in CO2 is 1
2 .

the distribution of the symmetric stretch levels will not influence g̃e/o. This is also the

reason why diatomic molecules do not have a varying degeneracy for higher vibrational

levels.

Next, we will reason that the cross-section is not altered by the varying degeneracies

at higher levels, so that the total signal level is still a good measure for the species

density. By adding the even and odd parts of eq. 6 or 7, we find that in general

g̃e + g̃o = gs + ga. For CO2, gs = 1 and ga = 0. Since both gs and ga are constants

that have no temperature dependence, including the alternating degeneracy for higher

vibrational levels will not influence the average cross-section. There remains a small

dependency of the cross-section on the vibrational level via the `-dependent Placzek-

Teller coefficients[Long, 2002], which reduces the cross-section for high ` and low J .

However, this is a minor effect amounting to a 3% overestimation of the average cross-

section at 2000K. Therefore, the total band intensity is a direct measure for the total

number density, even when hot-bands are included.

The ratio of even to odd rotational levels can be an indicator for non-Boltzmann
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Figure 4. Fit of the rotational Raman spectrum at three different temperatures:

430K, 1380K, and 2670K. At higher temperatures, S/N is greatly reduced, resulting in

overestimation of the odd-J component. The anomalous peaks are due to noise from

the intensifier.

distributed vibrational levels. In the limit for high temperatures, eq 6 and 7 yield

g̃e = g̃o, which for CO2 is equal to 1
2
. The implication is that for a system where

the vibrational levels are Boltzmann distributed, the level e or o that has the highest

degeneracy at low temperatures will always remain the highest, no matter how high

the (vibrational) temperature. This condition can only be violated if the vibrational

levels do not follow a Boltzmann distribution. Because bending mode levels will always

have ge = go (see appendix Appendix A), this method is exclusively sensitive to the

overpopulation of asymmetric stretch levels. However, the distribution needs to deviate

far from a Boltzmann distribution for this to happen so it is well possible to have a

non-Boltzmann distribution while not violating this condition. Finally, already at room

temperature contributions of higher vibrational levels can be significant. Taking into

account higher vibrational levels, the apparent even/odd degeneracy is not equal to

the symmetric/asymmetric degeneracy (g̃e/o 6= gs/a). We therefore assess the values of

the apparent degeneracy at room temperature. This is important because bending

modes typically have a low energy and can be significantly populated already at
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low temperatures. At 300K we find g̃e/o = 0.96/0.04 instead of 1/0 for CO2, and

g̃e/o = 1.16/2.84 instead of 1/3 for C2H2. Although the correction is small, it may not

be negligible. We therefore recommend that the apparent nuclear degeneracy is always

used in favor of the ground state values, even at lower temperatures.

3. Implementing the vibrational dependence of rotational constants

In the derivation of eq 4 it was assumed that the rotational constant is independent

of the vibrational level. In this section, we will assess how accurate this assumption

is. Assuming a constant Bv overlooks two important features in the approximated

spectrum: 1. A shift in the peak positions because of a changing average rotational

constant with increasing temperature, and 2. An apparent broadening of the rotational

peaks as a result of not having a single rotational constant, but rather a distribution

of rotational constants that results in a ’smearing’ of the rotational peaks. Both effects

become more pronounced at higher J .

The shift in peak positions can be corrected by using an apparent or average

rotational constant B̃ instead of the ground state value B0, which can be a function

of temperature. The apparent broadening is modelled as a Gaussian function that is

added to other pre-existing broadening mechanisms, with a standard deviation σ̃J that

increases with the rotational quantum number J :

σ̃J = Jσ̃1 (9)

with σ̃J the apparent broadening, J the rotational quantum number and σ̃1 the initial

apparent broadening for J = 1.

To determine the values for B̃ and σ̃1, first reference synthetic spectra

were generated in a range of temperatures from 300K to 2000K with 100K

increments. These fully detailed synthetic spectra include all features as

described by Vestin[Vestin et al., 2008]. Spectroscopic constants were taken from

Courtoy[Courtoy, 1957], but can also be found in the paper by Chedin[Chedin, 1979].

At each temperature, the reference spectrum was fitted by an approximated spectrum

as described by eq 1, but amended with an apparent broadening described in eq 9. The

temperature was used as an input parameter and was not fitted in this case, while the

apparent rotational constant B̃ and the initial apparent broadening σ̃1 were used as

fitting parameters, as was the apparent nuclear degeneracy like in eq 1. Separate fitting

parameters were used for the even and odd-J components of the spectrum to further

improve the accuracy of the model. At each temperature approximate model is fitted

to the fully detailed reference spectrum, resulting in the following fitting parameters:

g̃fito = 1− g̃fite , B̃fit
e , B̃fit

o , σ̃fit1,e , and σ̃fit1,o . These optimized values are presented in figure

5. Apart from determining the optimal values for apparent rotational constant and

broadening, this allows us to verify the accuracy of eq. 6 without any of the experimental

uncertainties that were present in the data shown in figure 3. The analytical expression

for the apparent degeneracy predicts the optimal value with high accuracy. The apparent
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Figure 5. Comparison of the optimally fitted parameters in the approximated

model as a function of temperature. Top: the fitted apparent degeneracy (blue dots)

compared to the analytical expression (solid black line). Middle: apparent rotational

constants for even (green) and odd (blue) components, respectively. Bottom: apparent

broadening for even (green) and odd (blue) components, respectively.

rotational constants show an appreciable deviation fromB0 at high temperatures, so that

the use of apparent rotational constants is warranted. To find how well the approximated

model reproduces the real spectrum, we will now compare three models: i) a ’naive’
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model with g̃e = 1 and g̃o = 0, ii) a model with an apparent degeneracy described by

eq 6, and iii) the improved model including additionally apparent rotational constants

and broadening, using the values displayed in figure 5. These three models were fitted

to the fully detailed spectra with a Gaussian lineshape of 1 cm−1 FWHM. Each model

was fitted to the synthetic spectra for a range of temperatures from 300 to 2000 K with

only the temperature as fitting parameter. In figure 6 the results of these fits are shown.

In the top plot, the error of the fitted temperature relative to the actual temperature

is plotted. Model 1 produces large temperature errors even at low temperatures. This

emphasizes the need for including the contribution of higher vibrational levels by using

the apparent degeneracy even at moderate to low temperatures, as discussed at the end

of section 2.3. For example, at 550K the temperature error is already over 10% if only

the vibrational ground state values for ge and go are used. Model 2 and model 3 perform

about equally well, with a temperature error below 3% for temperatures below 1500 K.

In the bottom graph the mismatch between the synthetic and fitted spectrum is plotted.

This is defined here as the fraction of area of the fit and synthetic spectrum that are not

overlapping. The mismatch is significantly smaller for model 3. In conclusion, model 2

and model 3 will result in a similarly accurate fitted temperature, but in model 3 the

residue will be lower.

4. Conclusions

We have demonstrated that it is possible to greatly simplify the calculation of the

rotational spectrum of centrosymmetric, linear polyatomic molecules, by separating

the rotational spectrum in an even and odd component with different weights. This

approximated spectrum was able to reproduce experimental spectra to a satisfactory

degree. The weights can be calculated by vibrationally averaging the nuclear spin

degeneracy over all vibrational levels. The resulting apparent degeneracy g̃e/o can be

evaluated analytically and provides a direct link to the temperature of the bending and

asymmetric stretch vibrational modes. This either eliminates the weight of the even/odd

component as a fitting parameter in the simplified model, or it provides the option to use

the ratio of even and odd rotational peaks as an indicator vibrational non-equilibrium.

The temperature error introduced by not including higher vibrational levels quickly

increases with temperature, so it is recommended that the apparent degeneracy is used

in favor of the ground vibrational state degeneracy even at low temperatures.
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Appendix A. Derivation of apparent degeneracy

In this section we elaborate on the derivation of eq 5 to eq 7. We start by investigating

the vibrationally dependent nuclear degeneracy ge/o,v in more detail, followed by the

evaluation of the sum over the vibrational levels. This results in a general expression

for g̃e/o that is applicable to any molecule that is in the D∞h point group, i.e. linear

and centrosymmetric.

Appendix A.1. Vibrational symmetry

First we will identify the symmetries of the vibrational normal modes. For non-

degenerate vibrations, i.e. the symmetric and asymmetric stretch, even wave

functions are totally symmetric and odd wave functions have the symmetry of the

vibration[Harris and Bertolucci, 1978]. This means that the symmetric stretch has

always symmetry Γνs = σ+
g regardless of its level. It also explains why the degeneracy
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Table A1. Symmetry of vibrational normal modes

Normal mode σ+
g σ+

u π

νs (sym.) always

νas (asym.) v even v odd

δd (bend.) ` = 0 ` 6= 0

Table A2. Direct product for symmetries of vibrational normal modes

⊗ σ+
g σ+

u π

σ+
g Σ+

g Σ+
u Π

σ+
u Σ+

u Σ+
g Π

π Π Π Π

for a diatomic molecule does not change with temperature: All its possible vibrational

modes (i.e. the single symmetric stretch) have the same symmetry σ+
g , so increasing the

temperature does not change the symmetry fractions. The asymmetric stretch alternates

between Γνas = σ+
g for even and Γνas = σ+

u for odd vibrational levels.

For the degenerate vibration, i.e. the bending mode, the symmetry depends on the

angular momentum quantum number ` and is Γδd = σ+
g , πu, δg, φu, ... for ` = 0, 1, 2, 3, ...,

respectively [Harris and Bertolucci, 1978]. Except for σ+
g , all these representations are

doubly degenerate in that for each J they represent two rotational levels. With respect

to rotational levels, the only thing that distinguishes the πu, δg, φu,... symmetries is that

rotational levels with J < |`| are absent. By ignoring this difference, we can consider all

these symmetries as the same and bunch them together in the πu-symmetry. In addition,

as shall be motivated in section Appendix A.2, in terms of rotational levels there is no

distinction between πg or πu, so that the g/u-label will be dropped for the π-symmetry.

The bending mode symmetry then becomes Γδd = σ+
g for ` = 0 and Γδd = π for ` 6= 0. In

section Appendix A.3.2 we will assess the error that is introduced by grouping together

all degenerate symmetries into a single π-symmetry. The symmetries of the vibrational

normal modes are summarized in table A1.

The molecular symmetry is determined by the direct product of the symmetries of

the individual vibrational normal modes:

Γv =
⊗∏
i

Γi (A.1)

Here Γi is the symmetry of some normal mode i. In table A2 the direct products

of relevant vibrational symmetries are tabulated. We follow the convention of using

small Greek letters for normal mode symmetries, and capital letters for the molecular

symmetry.
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Figure A1. The symmetry of rotational levels for different symmetry representations

of the vibrational mode[Herzberg, 1950].

Appendix A.2. Rotational symmetry and nuclear degeneracy

We return to evaluating the following sum:

g̃e/o =
∑
v

nv
n0

ge/o,v (A.2)

The value of ge/o,v depends on the symmetry of the rotational level (s/a), which in turn

depends on the symmetry of the vibrational level[Herzberg, 1950], as is shown in figure

A1. Because bending vibrations are doubly degenerate, there are two rotational levels

for each J in the Π-symmetry; one with s and one with a rotational symmetry. Since

this is the case for both the Πg- and Πu-symmetry, we will ignore the g/u label in a

Π-symmetry. We thus find that there are three different expressions possible for ge/o,v
depending on the vibrational symmetry Γv of the molecule:

ge/o,v =


gs/a, Γv = Σ+

g

ga/s, Γv = Σ+
u

1
2
(gs + ga), Γv = Π

(A.3)

The double degeneracy in the Π-symmetry is due to the fact that the `-quantum

number can be positive or negative. Since we will later explicitly distinguish between
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positive and negative `, the Π-symmetry degeneracies are halved. Eq A.2 can now be

evaluated by taking the sums for the Σ+
g , Σ+

u , and Π vibrational symmetries, respectively:

g̃e/o = gs/a
QΣ+

g

Qvib

+ ga/s
QΣ+

u

Qvib

+
1

2
(gs + ga)

QΠ

Qvib

(A.4)

Here QΓv is the partition function that counts all molecules with some vibrational

symmetry Γv = Σ+
g ,Σ

+
u , or Π, and Qvib is the vibrational partition function. Since

the molecules can only have one of the three symmetries Σ+
g , Σ+

u , and Π, their partition

functions count every possible vibrational state, i.e.:

Qvib = QΣ+
g

+QΣ+
u

+QΠ (A.5)

This is used to eliminate QΠ from eq A.4:

g̃e/o =
1

2
(gs + ga)±

1

2
(gs − ga)

∆QΣ+

Qvib

(A.6)

The plus sign is used for even J and the minus sign is used for odd J , and we have

defined ∆QΣ+ = QΣ+
g
−QΣ+

u
. All that remains is thus finding an expression for ∆QΣ+ .

Since the symmetry of the molecule depends on that of its normal modes, calculating

the symmetry partition functions QΣ+
g

and QΣ+
u

is only possible if we have more

information on the normal mode symmetry partition functions first. In the next section

we will therefore derive the relevant symmetry partition functions for the three different

normal modes in a linear molecule: symmetric stretch (νs), asymmetric stretch (νas)

and bending mode (δd).

Appendix A.3. Vibrational symmetry partition functions

First, the calculation of the ’standard’ vibrational partition functions is revisited.

The calculation is then extended to the vibrational partition functions with a given

symmetry. The partition function for a vibrational normal mode i is calculated in

general by summing the Boltzmann factors for the vibrations:

Qi =
N∑
v=0

g(v) exp−hcG0(v)

kTi
(A.7)

here g(v) is the degeneracy of the vibrational level (not to be confused with the

rotational degeneracy) and G0(v) the vibrational energy of the level v with respect

to the ground vibrational level. In the harmonic oscillator approximation, all higher

order v terms except for the linear are ignored in G0(v). As a result, the energy spacing

G0(v + 1) − G0(v) is constant for any v. Therefore the sum can be evaluated as a

geometric series. We shall first calculate the partition functions for the non-degenerate

vibrations, and then focus on the more complicated degenerate partition functions.
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Appendix A.3.1. Non-degenerate vibrations For non-degenerate vibrations g(v) = 1

for every level v, so by using the harmonic oscillator approximation, eq. A.7 can be

evaluated as:

Qi =
∞∑
v=0

zi
v =

1

1− zi
, i ∈ νs, νas (A.8)

with zi = exp−hcωi

kTi
the Boltzmann factor, ωi the energy of the fundamental vibration

(vi = 1) with respect to the ground vibrational level in cm−1 and Ti the vibrational

temperature of normal mode i. The notation i ∈ νs, νas is used to state that this result

is valid for the symmetric (νs) and asymmetric (νas) stretch. As mentioned earlier, a

symmetric stretch normal mode can only have the σ+
g symmetry. Consequently, for

the symmetric stretch the σ+
g symmetry partition function is equal to the normal mode

partition function:

Qi,σ+
g

= Qi, i ∈ νs (A.9)

According to table A1 the asymmetric stretch can have one of two symmetries: σ+
g or

σ+
u . Since all levels with an even quantum have a σ+

g symmetry we can write for its

symmetry partition function:

Qi,σ+
g

=
∞∑
k=0

zi
2k =

1

1 + zi
Qi, i ∈ νas (A.10)

Here we have expressed the result in terms of the normal mode partition function. As

there are only two possible symmetries for the asymmetric stretch, the molecules that

have σ+
u symmetry are all the molecules in the νas normal mode that are not counted

by Qi,σ+
g

:

Qi,σ+
u

= Qi −Qi,σ+
g

=
zi

1 + zi
Qi, i ∈ νas (A.11)

Appendix A.3.2. Degenerate vibrations The partition functions for degenerate

vibrations (bending modes) are less straightforward to calculate because of the double

degeneracy. To visualize how the levels of the bending mode are distributed, it is

insightful to consider the bending mode as two separate orthogonal modes H and V .

When adding quanta to the δd mode, they can be added independently to the H or the

V mode. By tabulating the resulting states, we establish the blue table in figure A2. In

this table, states in the NE-SW diagonals have the same number of quanta and therefore

correspond to the states with the same vibrational quantum v. The NW-SE diagonals

correspond to states with the same ` quantum number that have the same symmetry. It

should be emphasized that this table cannot be taken too literally since the horizontal

and vertical bending modes cannot be distinguished like this, but it helps to account

for the different levels in the bending mode. By counting the amount of states in the

NE-SW diagonals we find the well known result that the vibrational degeneracy in level
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Figure A2. By considering the bending mode as two non-degenerate modes H and V

all possible levels can be tabulated. We can then recognize that each level in the same

NE-SW diagonal has the same number of quanta v. The states in the same NW-SE

diagonal have the same angular momentum quantum number `.

v is g(v) = v + 1. This is plugged into eq. A.7 to calculate the normal mode partition

function:

Qi =
∞∑
v=0

(v + 1)zi
v =

1

(1− zi)2
, i ∈ δd (A.12)

The table shows that there is exactly one σ+
g state for every even v, so that the normal

mode symmetry partition function becomes:

Qi,σ+
g

=
∞∑
k=0

zi
2k =

1− zi
1 + zi

Qi, i ∈ δd (A.13)

Similarly to eq A.11 the partition function for π symmetry counts all molecules in the

degenerate normal mode that are not counted by Qi,σ+
g

:

Qi,π = Qi −Qi,σ+
g

=
2zi

1 + zi
Qi, i ∈ δd (A.14)
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We take a small sidestep here to assess whether ignoring the absence of rotational levels

with J < |`| leads to significant errors. The partition function that counts all levels

with a given ` within the bending normal mode is given by:

Q` =
∞∑
k=0

zi
|`|+2k = zi

|`|1− zi
1 + zi

Qi, i ∈ δd (A.15)

Accounting for the absence of rotational levels with J < |`| is the same as summing the

` quantum up to a maximum of J . The bending normal mode partition function can

thus be calculated using:

Qi,π(J) = 2
J∑
`=1

Q` =
2zi(1− ziJ)

1 + zi
Qi, i ∈ δd (A.16)

The factor 2 accounts for negative `-values. By comparing this to eq. A.14 we find that

the difference is given by the term zi
J , which will go rapidly to zero for increasing J .

In conclusion, ignoring the absence of rotational levels with J < |`| does not lead to a

significant error.

Appendix A.4. Apparent degeneracy

It is now possible to calculate ∆QΣ+ , which was the remaining unknown for finding the

apparent degeneracy, by using the expressions for the vibrational symmetry partition

functions. The molecular partition function is calculated by taking the product over the

partition functions of the normal modes:

Qvib =
∏
i

Qi (A.17)

In table A2 we see that the molecule can only be in Σ+
g or Σ+

u if every degenerate normal

mode is in a σ+
g symmetry, since any π normal mode will make the molecular symmetry

also Π. For the symmetric stretch this condition is trivially met because it always has

a σ+
g symmetry. Consequently, determining which of Σ+

g or Σ+
u is the symmetry of the

molecule, ultimately depends on the symmetry of the asymmetric stretch modes. It

would be tempting to demand the asymmetric stretch normal modes also to be σ+
g in

order to get a Σ+
g molecule, but there is a small nuance to be made here. For longer

molecules it is in principle possible to have an arbitrary number of asymmetric stretch

normal modes. According to table A2, if an even number of these modes have σ+
u

symmetry, the molecule will have Σ+
g symmetry. These combinations are taken into

account by directly calculating the difference partition function ∆QΣ+ and taking the

difference Qi,σ+
g
−Qi,σ+

u
individually for each asymmetric stretch normal mode:

∆QΣ+ =
∏
i∈νs

Qi,σ+
g
·
∏
i∈νas

(
Qi,σ+

g
−Qi,σ+

u

)
·
∏
i∈δd

Qi,σ+
g

(A.18)

Combining this with eqs A.9 to A.13 yields:

∆QΣ+ =
∏
i∈νs

Qi ·
∏
i∈νas

1− zi
1 + zi

Qi ·
∏
i∈δd

1− zi
1 + zi

Qi (A.19)
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Surprisingly, the products for the bending and asymmetric stretch normal modes have

the same form and can therefore be grouped together. Combining eq A.19 with eq A.17

we can rewrite eq A.6 to:

g̃e/o =
1

2
(gs + ga)±

1

2
(gs − ga)

∏
i∈δd,νas

1− zi
1 + zi

(A.20)

Here the plus is for even and the minus for odd rotational levels, and the product is

taken over only the bending (δd) and asymmetric stretch (νas) normal modes. We can

now readily evaluate this expression by plugging in the degeneracies gs and ga for CO2

and C2H2, to arrive at the explicit expressions for the apparent nuclear degeneracy:

CO2 : g̃e/o =
1

2
± 1

2

(
1− z2

1 + z2

)(
1− z3

1 + z3

)
(A.21)

C2H2 : g̃e/o = 2∓
(

1− z3

1 + z3

)(
1− z4

1 + z4

)(
1− z5

1 + z5

)
(A.22)

With:

zi = exp−hcωi
kTi

(A.23)

In conclusion, we have derived the relationship between the apparent nucelar

degeneracy and the vibrational temperature. This relationship emerged because of

the alternation of nuclear degeneracies in higher vibrational levels of the bending and

asymmetric stretch normal modes.


