447 research outputs found

    Therapeutic drug monitoring of antimicrobial drugs in neonates. An opinion paper

    Get PDF
    Neonatal infections are associated with high morbidity and mortality rates. Optimal treatment of these infections requires knowledge of neonatal pharmacology and integration of neonatal developmental pharmacokinetics (PKs) of antimicrobial drugs in the design of dosing regimens for use with different gestational and postnatal ages. Population PK and pharmacodynamic models are used to personalize the use of these drugs in these fragile patients. The final step to further minimize variability in an individual patient is therapeutic drug monitoring (TDM), where the same population PK/pharmacodynamic models are used in concert with optimally drawn blood samples to further fine-tune therapy. The purpose of this article is to describe the present status and future role of model-based precision dosing and TDM of antimicrobial drugs in neonates. METHODS: PubMed was searched for clinical trials or clinical studies of TDM in neonates. RESULTS: A total of 447 articles were retrieved, of which 19 were concerned with antimicrobial drugs. Two articles (one aminoglycoside and one vancomycin) addressed the effects of TDM in neonates. We found that, in addition to aminoglycosides and vancomycin, TDM also plays a role in beta-lactam antibiotics and antifungal drugs. CONCLUSIONS: There is a growing awareness that, in addition to aminoglycosides and vancomycin, the use of beta-lactam antibiotics, such as amoxicillin and meropenem, and other classes of antimicrobial drugs, such as antifungal drugs, may benefit from TDM. However, the added value must be shown. New analytical techniques and software development may greatly support these novel developments

    Quantitative Analysis of Gentamicin Exposure in Neonates and Infants Calls into Question Its Current Dosing Recommendations.

    Get PDF
    Optimal dosing of gentamicin in neonates is still a matter of debate despite its common use. We identified gentamicin dosing regimens from eight international guidelines and seven Swiss neonatal intensive care units. The dose per administration, the dosing interval, the total daily dose, and the demographic characteristics between guidelines were compared. There was considerable variability with respect to dose (4 to 6 mg/kg), dosing interval (24 h to 48 h), total daily dose (2.5 to 6 mg/kg/day), and patient demographic characteristics that were used to calculate individualized dosing regimens. A model-based simulation study in 1071 neonates was performed to determine the achievement of efficacious peak gentamicin concentrations according to predefined MICs (Cmax/MIC ≥ 10) and safe trough concentrations (Cmin ≤ 2 mg/liter) with recommended dosing regimens. MIC targets of 0.5 and 1 mg/liter were used. Dosing optimization was performed giving priority to the first day of treatment and with the goal of simplifying dosing. Current gentamicin neonatal guidelines allow to achieve effective peak concentrations for MICs ≤ 0.5 mg/liter but not higher. Model-based simulations indicate that to attain peak gentamicin concentrations of ≥10 mg/liter, a dose of 7.5 mg/kg should be administered using an extended dosing interval regimen. Trough concentrations of ≤2 mg/liter can be maintained with a dosing interval of 36 to 48 h in neonates according to gestational and postnatal age. For treatment beyond 3 days, therapeutic drug monitoring is advised to maintain adequate serum concentrations

    CYP3A5 variant allele frequencies in Dutch Caucasians

    Get PDF
    BACKGROUND: Enzymes of the cytochrome P450 3A (CYP3A) family are responsible for the metabolism of >50% of currently prescribed drugs. CYP3A5 is expressed in a limited number of individuals. The absence of CYP3A5 expression in approximately 70% of Caucasians was recently correlated to a genetic polymorphism (CYP3A5*3). Because CYP3A5 may represent up to 50% of total CYP3A protein in individuals polymorphically expressing CYP3A5, it may have a major role in variation of CYP3A-mediated drug metabolism. Using sequencing, have been identified (Hustert et al. Pharmacogenetics 2001;11:773-9; Kuehl et al. Nat Genet 2001;27:383-91) variant alleles *2 through *7 for CYP3A5. Detection of CYP3A5 variant alleles, and knowledge about their allelic frequency in specific ethnic groups, is important to establish the clinical relevance of screening for these polymorphisms to optimize pharmacotherapy. METHODS: In a group of 500 healthy Dutch Caucasian blood donors, we determined the allelic frequency of the CYP3A5*2, *3, *4, *5, *6, and *7 alleles by use of newly developed PCR-restriction fragment length polymorphism assays. RESULTS: The frequency of the defective CYP3A5*3 allele in the Dutch Caucasian population was 91%, followed by the CYP3A5*2 (1%) and CYP3A5*6 (0.1%) alleles. The CYP3A5*4, *5, and *7 alleles were not detected. CONCLUSIONS: On the basis of its allelic frequency, screening for the CYP3A5*3 allele in the Caucasian population is extremely relevant. In addition, screening for the CYP3A5*2 allele may be taken into consideration in individuals heterozygous for the CYP3A5*3 allele. The CYP3A5*4, *5, *6, and *7 alleles have low allelic frequencies that do not support initial screening

    Melatonin as a Therapy for Preterm Brain Injury: What Is the Evidence?

    Get PDF
    Despite significant improvements in survival following preterm birth in recent years, the neurodevelopmental burden of prematurity, with its long-term cognitive and behavioral consequences, remains a significant challenge in neonatology. Neuroprotective treatment options to improve neurodevelopmental outcomes in preterm infants are therefore urgently needed. Alleviating inflammatory and oxidative stress (OS), melatonin might modify important triggers of preterm brain injury, a complex combination of destructive and developmental abnormalities termed encephalopathy of prematurity (EoP). Preliminary data also suggests that melatonin has a direct neurotrophic impact, emphasizing its therapeutic potential with a favorable safety profile in the preterm setting. The current review outlines the most important pathomechanisms underlying preterm brain injury and correlates them with melatonin’s neuroprotective potential, while underlining significant pharmacokinetic/pharmacodynamic uncertainties that need to be addressed in future studies

    Amoxicillin Dosing Regimens for the Treatment of Neonatal Sepsis: Balancing Efficacy and Neurotoxicity.

    Get PDF
    INTRODUCTION: Large variability in neonatal amoxicillin dosing recommendations may reflect uncertainty about appropriate efficacy and toxicity targets. OBJECTIVE: The aim of this study was to model efficacious and safe exposure for current neonatal amoxicillin dosing regimens, given a range of assumptions for minimal inhibitory concentration (MIC), targeted %fT > MIC, and potential for aminopenicillin-related neurotoxicity. METHODS: Individual intravenous amoxicillin exposures based on 6 international and 9 Swiss neonatal dosing recommendations, reflecting the range of current dosing approaches, were assessed by a previously developed population pharmacokinetic model informed by neonatal data from an international cohort. Exposure was simulated by attributing each dosing regimen to each patient cohort. End points of interest were %fT > MIC and potential neurotoxicity using Cmax > 140 mg/L as threshold. RESULTS: None of the dosing regimens achieved targets of ≥100%fT > MIC at any of the relevant MICs for a desired probability of target attainment (PTA) of ≥90%. All regimens achieved a PTA ≥90% for Streptococcus agalactiae (MIC 0.25 mg/L) and Listeria monocytogenes (MIC 1 mg/L) when targeting ≤70%fT > MIC. In contrast, none of the regimens resulted in a PTA ≥90% targeting ≥70%fT > MIC for enterococci (MIC 4 mg/L). The maximum amoxicillin concentration associated with potential neurotoxicity was exceeded using 4 dosing regimens (100 mg/kg q12, 60/30 mg/kg q12/8, 50 mg/kg q12/8/6, and 50 mg/kg q12/8/4) for ≥10% of neonates. CONCLUSIONS: The acceptability of regimens is highly influenced by efficacy and toxicity targets, the selection of which is challenging. Novel randomized trial designs combined with pharmacometric modeling and simulation could assist in selecting optimal dosing regimens in this understudied population

    Age- and therapy-related effects on morphine requirements and plasma concentrations of morphine and its metabolites in postoperative infants

    Get PDF
    BACKGROUND: To investigate clinical variables such as gestational age, sex, weight, the therapeutic regimens used and mechanical ventilation that might affect morphine requirements and plasma concentrations of morphine and its metabolites. METHODS: In a double-blind study, neonates and infants stratified for age [group I 0-4 weeks (neonates), group II > or =4-26 weeks, group III > or =26-52 weeks, group IV > or =1-3 yr] admitted to the paediatric intensive care unit after abdominal or thoracic surgery received morphine 100 micro g kg(-1) after surgery, and were randomly assigned to either continuous morphine 10 micro g kg(-1) h(-1) or intermittent morphine boluses 30 micro g kg(-1) every 3 h. Pain was measured using the COMFORT behavioural scale and a visual analogue scale. Additional morphine was adm

    Visualization of the thymus by substance P receptor scintigraphy in man

    Get PDF
    Substance P, an 11-amino acid neuropeptide, has an important role in modulating pain transmission through neurokinin 1 and 2 receptors. Substance P and other tachykinins may also play a role in the pathogenesis of inflammatory diseases. In this study we present the results concerning the metabolism of the substance P analogue [111In-DTPA-Arg1]-substance P in man, as well as the visualization of the thymus in patients with immune-mediated diseases. Twelve selected patients were investigated, comprising five with inflammatory bowel disease, one with ophthalmic Graves' disease, one with sclerosing cholangitis, one with Sjogren's syndrome, one with rheumatoid arthritis, one with systemic lupus erythematosus and two with myasthenia gravis. During and after intravenous administration of 150-250 MBq (2.5-5.0 μg) [111In-DTPA-Arg1]-substance P, blood pressure, heart rate and oxygen saturation were monitored. Radioactivity was measured in blood, urine and faeces during the 48 h after injection. Planar and single-photon emission tomographic images were obtained 4 and 24 h after injection. After administration of [111In-DTPA-Arg1]-substance P a transient flush was observed in all patients. Degradation of [111In-DTPA-Arg1] -substance P started in the first minutes after administration, resulting in a half-life of 10 min for the total plasma radioactivity, and of 4 min for the intact radiopharmaceutical, as identified with high-performance liquid chromatography. Urinary excretion accounted for &gt;95% of the radioactivity within 24 h post injection, and up to 0.05% was found in the faeces up to 60 h. In all patients uptake of radioactivity was found in the areolae mammae (in women), liver, spleen, kidneys and urinary bladder. In eight patients a high uptake of [111In-DTPA-Arg1]-substance P was observed in the thymus. We conclude that, despite its short half-life. [111In-DTPA-Arg1]-substance P, a new radiopharmaceutical, can be used to visualize the thymus. This may contribute to the investigation of the role of thymus in immune-mediated diseases. In addition, inflammatory sites in various diseases could be visualized.</p

    Different Vancomycin Immunoassays Contribute to the Variability in Vancomycin Trough Measurements in Neonates

    Get PDF
    Substantial interassay variability (up to 20%) has been described for vancomycin immunoassays in adults, but the impact of neonatal matrix is difficult to quantify because of blood volume constraints in neonates. However, we provide circumstantial evidence for a similar extent of variability. Using the same vancomycin dosing regimens and confirming similarity in clinical characteristics, vancomycin trough concentrations measured by PETINIA (2011-2012, n = 400) were 20% lower and the mean difference was 1.93 mg/L compared to COBAS (2012-2014, n = 352) measurements. The impact of vancomycin immunoassays in neonatal matrix was hereby suggested, supporting a switch to more advanced techniques (LC-MS/MS)

    Methadone dosing strategies in preterm neonates can be simplified

    Get PDF
    Aims: A dramatic increase in newborn infants with neonatal abstinence syndrome has been observed and these neonates are frequently treated with complex methadone dosing schemes to control their withdrawal symptoms. Despite its abundant use, hardly any data on the pharmacokinetics (PK) of methadone is available in preterm neonates. Therefore we investigated developmental PK of methadone and evaluated current dosing strategies and possible simplification in this vulnerable population. Methods: A single-centre open-label prospective study was performed to collect PK data after a single oral dose of methadone in preterm neonates. A population PK model was built to characterize developmental PK of (R)- and (S)-methadone. Model-based simulations were performed to identify a simplified dosing strategy to reach and maintain target methadone exposure. Results: A total of 121 methadone concentrations were collected from 31 preterm neonates. A one-compartment model with first order absorption and elimination kinetics best described PK data for (R)- and (S)-methadone. Clearance increases with advancing gestational age and differs between R- and S-enantiomer, being slightly higher for the former (0.244 vs 0.167 L/h). Preterm neonates reached target exposure after 48 hours with currently used dosing schedules. Output from simulations revealed that target exposures can be achieved with a simplified dosing strategy during the first 4 days of treatment. Conclusion: Methadone clearance in preterm neonates increases with advancing gestational age and its disposition is influenced by its chirality. Simulations that account for developmental PK changes indicate a shorter methadone dosing strategy can maintain target exposure to control withdrawal symptoms. © 2019 The British Pharmacological Societ
    corecore