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Abstract
Introduction: Large variability in neonatal amoxicillin dos-
ing recommendations may reflect uncertainty about appro-
priate efficacy and toxicity targets. Objective: The aim of this 
study was to model efficacious and safe exposure for current 
neonatal amoxicillin dosing regimens, given a range of as-
sumptions for minimal inhibitory concentration (MIC), tar-
geted %fT > MIC, and potential for aminopenicillin-related 
neurotoxicity. Methods: Individual intravenous amoxicillin 
exposures based on 6 international and 9 Swiss neonatal 
dosing recommendations, reflecting the range of current 
dosing approaches, were assessed by a previously devel-
oped population pharmacokinetic model informed by neo-
natal data from an international cohort. Exposure was simu-
lated by attributing each dosing regimen to each patient co-
hort. End points of interest were %fT > MIC and potential 

neurotoxicity using Cmax > 140 mg/L as threshold. Results: 
None of the dosing regimens achieved targets of ≥100%fT > 
MIC at any of the relevant MICs for a desired probability of 
target attainment (PTA) of ≥90%. All regimens achieved a 
PTA ≥90% for Streptococcus agalactiae (MIC 0.25 mg/L) and 
Listeria monocytogenes (MIC 1 mg/L) when targeting ≤70%fT 
> MIC. In contrast, none of the regimens resulted in a PTA 
≥90% targeting ≥70%fT > MIC for enterococci (MIC 4 mg/L). 
The maximum amoxicillin concentration associated with po-
tential neurotoxicity was exceeded using 4 dosing regimens 
(100 mg/kg q12, 60/30 mg/kg q12/8, 50 mg/kg q12/8/6, and 
50 mg/kg q12/8/4) for ≥10% of neonates. Conclusions: The 
acceptability of regimens is highly influenced by efficacy and 
toxicity targets, the selection of which is challenging. Novel 
randomized trial designs combined with pharmacometric 
modeling and simulation could assist in selecting optimal 
dosing regimens in this understudied population.
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Introduction

Neonatal sepsis, including possible serious bacterial 
infection, is a significant driver of antibiotic use. Globally, 
around 3 million cases of and up to 600,000 deaths due to 
neonatal sepsis are estimated to occur every year [1]. A 
penicillin combined with gentamicin is the first-line 
treatment for neonatal sepsis recommended by the World 
Health Organization, and the combination of benzylpen-
icillin or an aminopenicillin with gentamicin accounts for 
29 and 15% of all regimens used in high-income and low/
middle-income countries, respectively [2, 3]. In countries 
such as Switzerland and France, ampicillin is not available 
and amoxicillin is used instead to treat suspected or prov-
en neonatal sepsis.

Despite the longstanding use of amoxicillin for the 
treatment of neonates, data supporting optimized dos-
ing are limited. In vitro amoxicillin efficacy is time-de-
pendent and the key pharmacokinetic/pharmacody-
namic (PKPD) index is the fraction of time during which 
the antibiotic concentration remains above the minimal 
inhibitory concentration (MIC) of the targeted patho-
gen (%fT > MIC) [4]. Most studies have not investigated 
amoxicillin pharmacokinetics (PK) across the entire age 
and disease spectrum of premature and term infants 
cared for in neonatal units [4–9]. This limits the identi-
fication of optimal dosing approaches in a population 
that is subject to short-term maturational changes in 
drug clearance during the postnatal period. Therefore, 
intravenous amoxicillin dosing recommendations show 
a large variation with a range from 40 to 120 mg/kg per 
day administered in 1, 2, 3, or 4 doses with or without 
dose stratification according to gestational or post-con-
ceptional age. PK modeling and simulation can support 
antibiotic dose optimization to identify regimens with 
suboptimal performance under a range of assumptions 
[10, 11]. The main objective of this study was to investi-
gate how the variability of currently used neonatal 
amoxicillin dosing regimens may impact (i) efficacy, 
given a range of different equally valid assumptions for 
MICs, PKPD targets, and (ii) safety, given drug concen-
tration associated with potential neurotoxicity in neo-
nates.

Materials and Methods

Individual amoxicillin exposures based on international and 
Swiss neonatal dosing recommendations were assessed by a popu-
lation PK model, which is informed by data from an international 
cohort.

Identification of Dosing Recommendations
Intravenous amoxicillin dosing regimens for the indication of 

neonatal infection (<1 month after birth) were collected from 9 
Swiss level III neonatal intensive care units (NICUs) in 2015. Dos-
ing recommendations were identified from 6 international guide-
lines, namely, the Swiss Agency for Therapeutic Products 2015 
(Swissmedic), the British National Formulary for Children 2015, 
the Neonatal Formulary 7th edition (NNF7), Frank Shann’s Drug 
Doses 2014 (Shann), The Harriet Lane 2014, and Lexicomp 2016. 
Dose per administration, dosing interval, total daily dose, and de-
mographics used for dynamic dosing regimens were extracted 
from each recommendation.

Population of Interest
Our model population (Table 1) was derived from the clinical 

data for neonates in the Antibiotic Resistance and Prescribing in 
European Children (ARPEC) study, an international antibiotic 
prescribing point prevalence study [12]. To reflect the population 
managed in neonatal care, neonates and young infants with a post-
menstrual age (sum of gestational age [GA] and postnatal age 
[PNA]) of ≤44 weeks, were considered. We consider this cohort to 
represent neonates likely to be exposed to amoxicillin and, there-
fore, to reflect our population of interest (no microbiological data 
were available). Individual amoxicillin exposure was simulated by 
attributing each dosing regimen to each cohort patient, that is, for 
each regimen, each patient was simulated once taking demograph-
ic characteristics such as age or weight into account as recom-
mended for the regimen of interest.

Model-Based Simulations of Amoxicillin Exposure
We systematically identified population PK models available in 

the literature developed by a nonlinear mixed effect modeling ap-
proach, which were applicable to a comparable neonatal popula-
tion. Amoxicillin exposure was simulated over a timeframe of 7 
days in total, for each patient and dosing regimen, following the 
first intravenous dose to assess amoxicillin exposure at initiation 
of empiric treatment. Exposure was evaluated after the first dose 
as adequate early empiric treatment is considered to be crucial for 
clinical outcomes. It was assumed that PK remains linear across 
the range of doses simulated. Simulations were performed with 
NONMEM® (version 7.3.0; ICON Development Solutions, Elli-
cott City, MD, USA) and R (version 3.5.1; R Development Core 
Team, Vienna, Austria, http://r-project.org) was used for data 
analysis and graphics. Nonlinear mixed effect models were utilized 
to perform simulations of amoxicillin exposure and were charac-
terized in terms of fixed effects and random effects. Fixed effects 
reflect the population average of the model parameters (e.g., clear-
ance). Random effects relate to the variability effects and allow 
quantification of inter- and intra-individual variability.

Definition of PKPD Targets
To evaluate the performance of amoxicillin dosing regimens, 

we considered a variety of antimicrobial outcome parameters in-
forming targeted PKPD indices. First, MICs were based on break-
points of microorganisms provided by the European Committee 
on Antimicrobial Susceptibility Testing (EUCAST) and represent 
various potential target pathogens for amoxicillin in the neonatal 
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population [13]. Pathogens such as Streptococcus agalactiae (GBS), 
Listeria monocytogenes, and enterococci were considered of par-
ticular interest because they are important etiologic agents for 
(early- and late-onset) neonatal sepsis [14–17]. The corresponding 
target MICs were 0.25, 1.0, and 4.0 mg/L, respectively. In order to 
provide an extensive profile of the probability of target attainment 
(PTA) for all potential MICs, we investigated MICs ranging from 
0.25 to 8 mg/L.

Second, for the PKPD target of %fT > MIC which is associated 
with efficacy, 5 interpretations which are proposed in literature 
were selected; 30%fT > MIC based on data suggesting to be suffi-
cient to ensure survival in animal models [18]; 50%fT > MIC as this 
has been reported as being associated with maximal bactericidal 
effects in such models [19]; 70%fT > MIC, 100%fT > MIC, and 
100%fT > 4 × MIC as these PKPD indices are being used in beta-
lactam therapeutic drug monitoring [20]. Third, the adequacy of 
each dosing regimen in reaching appropriate exposure in the pop-
ulation of interest was determined by computing the PTA for each 
dosing regimen (combination of MIC and PKPD target). A PTA 
≥90%, meaning that 90% of the neonatal population achieved the 
PKPD target, was considered adequate, although the acceptable 
level of PTA is currently still under debate, with values ranging 
from 90 to 99% [21].

In addition to efficacy targets, we evaluated the maximum ex-
posure expected for each neonate in the model population for the 
different dosing scenarios. We were interested in the proportion 
of neonates experiencing a maximal concentration Cmax > 140 
mg/L at steady state (i.e., exposure at day 7 after 1 week of treat-
ment) as this has been described as representing a potentially neu-
rotoxic aminopenicillin exposure in this population [22].

Results

Identification of Dosing Recommendations
Six international guidelines and all surveyed Swiss 

NICUs provided recommendations for intravenous 

amoxicillin dosing. Fifteen unique dosing regimens were 
identified and investigated. Dosing regimens ranged 
from 10 mg/kg every 12 h to 50 mg/kg every 4 h. Total 
daily doses of amoxicillin in use in Swiss NICUs (50–200 
mg/kg/day) were higher than those recommended in in-
ternational guidelines (20–200 mg/kg/day) with one ex-
ception (Shann; suggesting a maximum total daily dose 
of 300 mg/kg).

Model-Based Simulations of Amoxicillin
Two different population PK models were retrieved 

from the literature [8, 9]. One model was excluded as it 
studied exclusively term neonates undergoing therapeutic 
hypothermia [8]. Therefore, 1 population PK model ful-
filled the pre-specified criteria and was selected to simu-
late neonatal amoxicillin exposure [9]. Data from this 
analysis originated from a prospective, multicenter, PK 
study with a sample size of 187 preterm and term infants 
[9]. Three covariates for amoxicillin clearance in neonates 
were identified, namely, weight, GA, and PNA. A 2-com-
partment model with first-order elimination kinetics was 
identified to describe PK amoxicillin data accurately [9].

Amoxicillin Exposure under Different Dosing 
Recommendations
None of the dosing regimens achieved the PKPD tar-

gets of 100%fT > MIC or 100%fT > 4 × MIC at any of the 
relevant MICs based on a desired PTA of ≥90% (Table 2). 
All dosing regimens achieved 30%fT > MIC with an ad-
equate PTA of ≥90% for all relevant MICs (0.25–4.0 
mg/L), with the exception of amoxicillin administered at 
10–20 mg/kg every 12 h (Lexicomp and Harriet Lane).

Patients N (%)

Total, n (%) 1,063 (100)
Preterm (<37 weeks gestation), n (%) 713 (67)

Demographics
Male, N (%) 597 (56)
Gestational age, median (IQR)/[min–max], weeks 34 (29–39)/[22–42]
Birth weight, median (IQR)/[min–max], kg 2.1 (1.1–3.2)/[0.4–4.8]
Age,a median (IQR)/[min–max], days 6 (3–16)/[0–60]
≤7 days, N (%) 580 (55)
>7 and ≤14 days, N (%) 177 (17)
>14 and ≤28 days, N (%) 186 (28)
>28 and ≤60 days, N (%) 120 (11)
Weight,a median (IQR)/[min–max], kg 2.2 (1.2–3.2)/[0.5–4.8]
PMA,a median (IQR)/[min–max], weeks 35.6 (31–35.2)/[23.7–44]

PMA, postmenstrual age; PNA, postnatal age. a PNA at the time of assessment.

Table 1. Demographic characteristics of 
European neonates and infants in the 
ARPEC database
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Focusing on targeted MICs of predefined organisms of 
interest, the majority of regimens achieved a PTA ≥ 90% 
for GBS (MIC 0.25 mg/L) and L. monocytogenes (MIC 1 
mg/L) when targeting 70%fT > MIC or less, with the ex-
ception of 10–20 mg/kg every 12 h, achieving a PTA <75% 
(Table 2). In contrast, none of the regimens resulted in a 
PTA ≥90% targeting 70%fT > MIC for enterococci (MIC 
4 mg/L). Considering even higher MIC targets, such as 
the non-species-specific breakpoint of 8 mg/L, PTA ≥90% 
is only achieved for the modest target of 30%fT > MIC 
and falls off rapidly for higher PKPD targets (Fig. 1).

Amoxicillin Toxicity under Different Dosing 
Recommendations
Maximum amoxicillin exposures at steady state when 

considering different dosing regimens for the model pop-
ulation are shown in Figure 2. For only 4 regimens (100 
mg/kg every 12 h, 60/30 mg/kg every 12/8 h, 50 mg/kg 
every 12/8/6 h, and 50 mg/kg every 12/8/4 h) >10% of 
neonates experienced Cmax > 140 mg/L. Median Cmax for 
these 4 regimens were 205.7, 123.7, 104.6, and 108.5 mg/L, 
respectively. Neonates exposed to 3 regimens (25 mg/kg 
every 12/8 h [according to postmenstrual age and PNA], 
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Fig. 1. PTA (%) retrieved from model-based simulations following various dosing regimens which are not based 
on any demographic patient characteristics, assessed for multiple MICs breakpoints and PKPD targets (%fT > 
MIC). Dotted horizontal line indicates that ≥90% of population achieves PKPD target. PTA, probability of target 
attainment; GBS, S. agalactiae; MIC, minimal inhibitory concentration; PKPD, pharmacokinetic/pharmacody-
namic.
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25 mg/kg every 12/8 h [according to GA and PNA], and 
10/20 mg/kg every 12 h) were not expected to experience 
Cmax > 140 mg/L.

Discussion

Simulating amoxicillin exposure in neonates under 
various real-life dosing regimens yields 3 key findings. 
First, at low PKPD targets, (<70%fT > MIC) and MICs 
(≤1 mg/L) all regimens perform well, and regimen selec-
tion could primarily be driven by avoidance of high and 
potentially neurotoxic concentrations and by simplicity 
of dosing regimen for readiness of implementation. Sec-
ond, at high PKPD targets (70%fT > MIC or greater) or 
MICs (>2 mg/L), none of the regimens are expected to 
result in PTA ≥90%, indicating that amoxicillin may not 
be effective enough in such situations. Third, for entero-
cocci (MIC 4 mg/L), amoxicillin may be acceptable under 
certain dosing regimens if the PKPD target is <70%fT > 
MIC, but appropriate regimens may result in a large pro-
portion of neonates experiencing high Cmax concentra-
tions >140 mg/L. Our analysis highlights the paradox of 
identifying optimal amoxicillin dosing regimens in neo-
nates: the acceptability of regimens will differ according 
to selected PKPD targets (for efficacy and toxicity) and 
MICs, the selection of which in turn is challenging and 
highly influenced by microbiological epidemiology of 
neonatal sepsis (dominant pathogens and their resistance 
patterns). Rather than specifying dosing regimen based 
on individual patient characteristics such as weight, PNA, 
or GA, it could be more appropriate to determine dosing 
decisions on the exact indication and its microbiological 
epidemiology: the assumptions (PKPD targets and MIC 
levels) informed by the target infection contribute to a 
large extent to target attainment compared to the indi-
vidual patient characteristics.

As amoxicillin efficacy is time dependent, maximiza-
tion of amoxicillin concentrations above MIC throughout 
the dosing interval is theoretically desirable. However, the 
exact duration of the dosing interval that needs to be tar-
geted remains a matter of debate [19, 20]. In clinical prac-
tice, higher %fT > MIC are often targeted than indicated 
by experimental data [20]. This may be especially relevant 
for preterm neonates given their relative immunological 
immaturity resulting in altered pharmacodynamics com-
pared with studied adult populations [23]. Data from ro-
bust in vivo interventional trials to support such higher 
targets for improved patient outcomes are lacking. The 
potential benefit of continuous infusions is being dis-

cussed for many beta-lactams, especially for critically ill 
patients [24]. Given the lack of data to support a positive 
clinical impact of this approach and since the target patho-
gens with highest MIC for amoxicillin (e.g., enterococci) 
account for a relatively small proportion of culture-con-
firmed neonatal sepsis episodes, it remains unclear that 
routine use of continuous amoxicillin infusion at the em-
piric treatment stage is justifiable [16]. Practically speak-
ing, intravenous access in this population is often precar-
ious, central venous lines are avoided whenever possible.

Presumably, the rationale for higher PKPD targets 
used in clinical practice than supported by in vitro data is 
that beta-lactams are considered extremely safe because 
of their wide therapeutic window. Data linking high levels 
of beta-lactam exposure to neurotoxic events in vulner-
able populations, however, are accumulating [25–28]. 
Shaffer and colleagues described ampicillin-induced neu-
rotoxicity in very low birth weight neonates [22]. Of note, 
the investigation of neurotoxicity in this population is 
challenging because acute symptoms may remain unno-
ticed due to their subtle nature. Furthermore, both short- 
and long-term neurotoxic effects of amoxicillin can be 
hard to distinguish from effects of the disease itself [25].

We were unable to identify any additional robust data 
on potential neurotoxic effects of aminopenicillins when 
administered to neonates, including which parameter is 
relevant for toxic effects (Cmax, area under the curve, and 
time above concentration). The fact that poor neurode-
velopmental outcomes are seen not only in infants with 
culture-proven sepsis but also in culture-negative infants 
exposed to antibiotic treatment when compared to unex-
posed infants underscores the importance of considering 
the contribution of antibiotics, including commonly used 
beta-lactams [29, 30]. We therefore hypothesize that clin-
ically used amoxicillin doses may result in toxicity in 
some exposed neonates, representing an upper limit of its 
therapeutic window.

Limitations of this study should be recognized. Re-
garding empirical treatment when the pathogen is un-
known, combination therapy with an aminoglycoside is 
the first-line treatment of choice with the aim to broaden 
the coverage of the spectrum of the pathogens. Amino-
glycosides target mainly Gram-negative bacteria and 
staphylococci and are not appropriate for other Gram-
positive bacteria. Evidence on synergistic antibacterial 
evidence is lacking, and only in a few situations (e.g., en-
docarditis) are robust data available to support this effect. 
Only few population PK models for amoxicillin in pre-
term and term neonates exist [6, 8, 9]. The model of Tang 
et al. [9] was preferred since it was developed with pro-
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spectively collected data originating from a multicenter 
study and extensively validated (internal and external). A 
large sample size was used (n = 187) to develop and vali-
date this model, and the studied population provides an 
appropriate representation of our target neonatal popula-
tion. The following covariates were incorporated in the 
model; GA and PNA as a function of maturation on clear-
ance and weight on volume of distribution and on clear-
ance (by allometric scaling). Additionally, Bayesian TDM 
tools incorporating post hoc Bayesian estimation based 
on opportunistic blood sampling and integrating individ-
ual targets could further support personalized dosing reg-
imen selection and adjustment.

Conclusion

At present, simulations may be used only to identify 
regimens more or less likely to be appropriate in the con-
text of a specific microbiological epidemiology of neona-
tal sepsis. A small set of potential dosing regimens emerge 
as unlikely to be suitable even under very conservative 
assumptions (low targeted %fT > MIC or low MIC)since 
acceptable target attainment cannot be expected. The ac-
ceptability of all other dosing regimens will strongly be 
influenced by expected MICs and optimal PKPD targets. 
The selection of these targets is in turn challenging with-
out clear and robust clinical data linking them to key out-
comes. For Switzerland, the presented modeling provid-
ed information in selecting a harmonized neonatal intra-
venous amoxicillin dosing regimen since reliable 
information on microbiological epidemiology is avail-
able. Implementing demographic patient characteristics 
in the dosing selection process is necessary but not suffi-
cient. Both the impact of development and maturation 
(reflected by patient characteristics) and microbiological 
epidemiology (reflected by targeted pathogens or MIC 
levels) are needed for optimal antimicrobial dosing in ne-
onates. Therefore, better in vivo characterization of PKPD 
parameters, preferably using novel randomized trial de-

signs combined with pharmacometric modeling and sim-
ulation, could considerably improve beta-lactam use with 
respect to efficacy and toxicity in this understudied, vul-
nerable population.
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