36 research outputs found

    Computational genomics of hyperthermophiles

    Get PDF
    With the ever increasing number of completely sequenced prokaryotic genomes and the subsequent use of functional genomics tools, e.g. DNA microarray and proteomics, computational data analysis and the integration of microbial and molecular data is inevitable. This thesis describes the computational analyses on (hyper)thermophilic archaeal and bacterial genomes with a particular emphasis on carbohydrate metabolic pathways and their regulation. These analyses were integrated with wet-lab functional genomics data and results from classical molecular biology and microbial physiology experiments. The research was conducted on the archaea Sulfolobus solfataricus, Pyrococcus furiosus, T. kodakaraensis and the hydrogen producing bacterium Caldicellulosiruptor saccharolyticus. The reconstruction of the central carbohydrate metabolism in the thermo-acidophile S. solfataricus was carried out by a combination of genome sequence, whole transcriptome and proteome analyses. Only slight differences in the mRNA and the protein expression levels were shown when S. solfataricus was grown on peptides vs. glucose. However, the breakdown of D-arabinose vs. D-glucose revealed a complete novel pathway in the domain of Archaea. Similar catabolic pathways were identified in other prokaryotes and therefore a comprehensive genomic reconstruction was carried out on the pentose utilizing pathways in Archaea and, additionally, the results were compared to Bacteria and Eukarya. A computational promoter analysis of the glycolytic genes in the anaerobic species of the order Thermococcales (P. furiosus and T. kodakaraensis) indicated a clear cis-regulatory element that putatively controls all the genes of the glucose and starch degrading pathways. A comparative genomic analysis of the hyperthermophilic Thermococcales species led to the discovery of a putative transcriptional regulator that is probably involved in regulation of the entire regulon. The complete genome sequence of the extremely thermophilic Caldicellulosiruptor saccharolyticus revealed a circular genome of 2,970,275 base pairs that encodes 2679 putative proteins. The central carbohydrate pathways of C. saccharolyticus were studied in detail and the pathways for producing biohydrogen from plant cell wall material were unraveled. Subsequently, a whole transcriptome analysis of C. saccharolyticus grown on different monosaccharides showed a tight transcriptional regulation of these pathways, without glucose-based catabolite repression. C. saccharolyticus is therefore a good candidate to produce molecular hydrogen from biomass feedstock. The new insights into how prokaryotic genomes, genes and their encoded proteins function, as described in this thesis, can be applied on hyperthermophilic proteins and strains for use in and improvement of industrial processes. <br/

    Two novel conjugative plasmids from a single strain of Sulfolobus

    Get PDF
    Two conjugative plasmids (CPs) were isolated and characterized from the same 'Sulfolobus islandicus' strain, SOG2/4, The plasmids were separated from each other and transferred into Sulfolobus soltataricus. One has a high copy number and is not stable (pSOG1) whereas the other has a low copy number and is stably maintained (pSOG2). Plasmid pSOG2 is the first Sulfolobus CP found to have these characteristics. The genomes of both pSOG plasmids have been sequenced and were compared to each other and the available Sulfolobus CPs. Interestingly, apart from a very well-conserved core, 70% of the pSOG 1 and pSOG2 genomes is largely different and composed of a mixture of genes that often resemble counterparts in previously described Sulfolobus CPs. However, about 20% of the predicted genes do not have known homologues, not even in other CPs. Unlike pSOG1, pSOG2 does not contain a gene for the highly conserved PIrA protein nor for obvious homologues of partitioning proteins. Unlike pNOB8 and pKEF9, both pSOG plasmids lack the so-called clustered regularly interspaced short palindrome repeats (CRISPRs). The sites of recombination between the two genomes can be explained by the presence of recombination motifs previously identified in other Sulfolobus CPs. Like other Sulfolobus CPs, the pSOG plasmids possess a gene encoding an integrase of the tyrosine recombinase family. This integrase probably mediates plasmid site-specific integration into the host chromosome at the highly conserved tRNA(Glu) loci

    A reported 20-gene expression signature to predict lymph node-positive disease at radical cystectomy for muscle-invasive bladder cancer is clinically not applicable

    Get PDF
    Background Neoadjuvant chemotherapy (NAC) for muscle-invasive bladder cancer (MIBC) provides a small but significant survival benefit. Nevertheless, controversies on applying NAC remain because the limited benefit must be weight against chemotherapy-related toxicity and the delay of definitive local treatment. Therefore, there is a clear clinical need for tools to guide treatment decisions on NAC in MIBC. Here, we aimed to validate a previously reported 20-gene expression signature that predicted lymph node-positive disease at radical cystectomy in clinically node-negative MIBC patients, which would be a justification for upfront chemotherapy. Methods We studied diagnostic transurethral resection of bladder tumors (dTURBT) of 150 MIBC patients (urothelial carcinoma) who were subsequently treated by radical cystectomy and pelvic lymph node dissection. RNA was isolated and the expression level of the 20 genes was determined on a qRT-PCR platform. Normalized Ct values were used to calculate a risk score to predict the presence of node-positive disease. The Cancer Genome Atlas (TCGA) RNA expression data was analyzed to subsequently validate the results. Results In a univariate regression analysis, none of the 20 genes significantly correlated with nodepositive disease. The area under the curve of the risk score calculated by the 20-gene expression signature was 0.54 (95% Confidence Interval: 0.44-0.65) versus 0.67 for the model published by Smith et al. Node-negative patients had a significantly lower tumor grade at TURBT (p = 0.03), a lower pT stage (p<0.01) and less frequent lymphovascular invasion (13% versus 38%, p<0.01) at radical cystectomy than node-positive patients. In addition, in the TCGA data, none of the 20 genes was differentially expressed in node-negative versus node-positive patients. Conclusions We conclude that a 20-gene expression signature developed for nodal staging of MIBC at radical cystectomy could not be validated on a qRT-PCR platform in a large cohort of dTURBT specimens

    Synchronous and metachronous urothelial carcinoma of the upper urinary tract and the bladder: Are they clonally related? A systematic review

    Get PDF
    Purpose: Following radical nephroureterectomy for upper urinary tract urothelial carcinoma (UTUC), intravesical recurrence (IVR) is found in 22% to 47% of patients. Patients with a primary urothelial carcinoma of the bladder (UCB) have an increased risk of a future UTUC (1%–5%). Paired UTUC and UCB might represent clonally related tumors due to intraluminal seeding of tumor cells or might be separate entities of urothelial carcinoma caused by field cancerization. We systematically reviewed all the relevant literature to address the possible clonal relation of UTUC and paired UCB. Materials and Methods: MEDLINE, EMBASE, and COCHRANE databases were systematically searched for relevant citations published between January 2000 and July 2019. This study was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-analyses guidelines. Of 5038 citations identified, 86 full papers were screened, and 9 studies met the inclusion criteria. Results: The populations studied and the molecular techniques used to assess clonality of UTUC and paired UCB differed largely over time. Eight studies reported on primary UTUC and meta- or synchronous IVR without a history of UCB. A total of 118 tumors

    A crucial role for the ubiquitously expressed transcription factor Sp1 at early stages of hematopoietic specification

    Get PDF
    Mammalian development is regulated by the interplay of tissue-specific and ubiquitously expressed transcription factors, such as Sp1. Sp1 knockout mice die in utero with multiple phenotypic aberrations, but the underlying molecular mechanism of this differentiation failure has been elusive. Here, we have used conditional knockout mice as well as the differentiation of mouse ES cells as a model with which to address this issue. To this end, we examine

    Targeted Chromatin Capture (T2C): A novel high resolution high throughput method to detect genomic interactions and regulatory elements.

    Get PDF
    Background: Significant efforts have recently been put into the investigation of the spatial organization and the chromatin-interaction networks of genomes. Chromosome conformation capture (3C) technology and its derivatives are important tools used in this effort. However, many of these have limitations, such as being limited to one viewpoint, expensive with moderate to low resolution, and/or requiring a large sequencing effort. Techniques like Hi-C provide a genome-wide analysis. However, it requires massive sequencing effort with considerable costs. Here we describe a new technique termed Targeted Chromatin Capture (T2C), to interrogate large selected regions of the genome. T2C provides an unbiased view of the spatial organization of selected loci at superior resolution (single restriction fragment resolution, from 2 to 6 kbp) at much lower costs than Hi-C due to the lower sequencing effort. Results: We applied T2C on well-known model regions, the mouse β-globin locus and the human H19/IGF2 locus. In both cases we identified all known chromatin interactions. Furthermore, we compared the human H19/IGF2 locus data obtained from different chromatin conformation capturing methods with T2C data. We observed the same compartmentalization of the locus, but at a much higher resolution (single restriction fragments vs. the common 40 kbp bins) and higher coverage. Moreover, we compared the β-globin locus in two different biological samples (mouse primary erythroid cells and mouse fetal brain), where it is either actively transcribed or not, to identify possible transcriptional dependent interactions. We identified the known interactions in the β-globin locus and the same topological domains in both mouse primary erythroid cells and in mouse fetal brain with the latter having fewer interactions probably due to the inactivity of the locus. Furthermore, we show that interactions due to the important chromatin proteins, Ldb1 and Ctcf, in both tissues can be analyzed easily to reveal their role on transcriptional interactions and genome folding. Conclusions: T2C is an efficient, easy, and affordable with high (restriction fragment) resolution tool to address both genome compartmentalization and chromatin-interaction networks for specific genomic regions at high resolution for both clinical and non-clinical research

    PLZF targets developmental enhancers for activation during osteogenic differentiation of human mesenchymal stem cells

    Get PDF
    The PLZF transcription factor is essential for osteogenic differentiation of hMSCs; however, its regulation and molecular function during this process is not fully understood. Here, we revealed that the ZBTB16 locus encoding PLZF, is repressed by Polycomb (PcG) and H3K27me3 in naive hMSCs. At the pre-osteoblast stage of differentiation, the locus lost PcG binding and H3K27me3, gained JMJD3 recruitment, and H3K27ac resulting in high expression of PLZF. Subsequently, PLZF was recruited to osteogenic enhancers, influencing H3K27 acetylation and expression of nearby genes important for osteogenic function. Furthermore, we identified a latent enhancer within the ZBTB16/PLZF locus itself that became active, gained PLZF, p300 and Mediator binding and looped to the promoter of the nicotinamide N-methyltransferase (NNMT) gene. The increased expression of NNMT correlated with a decline in SAM levels, which is dependent on PLZF and is required for osteogenic differentiatio

    Molecular heterogeneity and early metastatic clone selection in testicular germ cell cancer development

    Get PDF
    Background Testicular germ cell cancer (TGCC), being the most frequent malignancy in young Caucasian males, is initiated from an embryonic germ cell. This study determines intratumour heterogeneity to unravel tumour progression from initiation until metastasis. Methods In total, 42 purified samples of four treatment-resistant nonseminomatous (NS) TGCC were investigated, including the precursor germ cell neoplasia in situ (GCNIS) and metastatic specimens, using whole-genome and targeted sequencing. Their evolution was reconstructed. Results Intratumour molecular heterogeneity did

    DOC1-Dependent Recruitment of NURD Reveals Antagonism with SWI/SNF during Epithelial-Mesenchymal Transition i

    Get PDF
    The Nucleosome Remodeling and Deacetylase (NURD) complex is a key regulator of cell differentiation that has also been implicated in tumorigenesis. Loss of the NURD subunit Deleted in Oral Cancer 1 (DOC1) is associated with human oral squamous cell carcinomas (OSCCs). Here, we show that restoration of DOC1 expression in OSCC cells leads to a reversal of epithelial-mesenchymal transition (EMT). This is caused by the DOC1-dependent targeting of NURD to repress key transcriptional regulators of EMT. NURD recruitment drives extensive epigenetic reprogramming, including eviction of the SWI/SNF remodeler, formation of inaccessible chromatin, H3K27 deacetylation, and binding of PRC2 and KDM1A, followed by H3K27 methylation and H3K4 demethylation. Strikingly, depletion of SWI/SNF mimics the effects of DOC1 re-expression. Our results suggest that SWI/SNF and NURD function antagonistically to control chromatin state and transcription. We propose that disturbance of this dynamic equilibrium may lead to defects in gene expression that promote oncogenesis
    corecore