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BACKGROUND: Testicular germ cell cancer (TGCC), being the most frequent malignancy in young Caucasian males, is initiated from
an embryonic germ cell. This study determines intratumour heterogeneity to unravel tumour progression from initiation until

metastasis.

METHODS: In total, 42 purified samples of four treatment-resistant nonseminomatous (NS) TGCC were investigated, including the
precursor germ cell neoplasia in situ (GCNIS) and metastatic specimens, using whole-genome and targeted sequencing. Their

evolution was reconstructed.

RESULTS: Intratumour molecular heterogeneity did not correspond to the supposed primary tumour histological evolution.
Metastases after systemic treatment could be derived from cancer stem cells not identified in the primary cancer. GCNIS mostly
lacked the molecular marks of the primary NS and comprised dominant clones that failed to progress. A BRCA-like mutational
signature was observed without evidence for direct involvement of BRCAT and BRCA2 genes.

CONCLUSIONS: Our data strongly support the hypothesis that NS is initiated by whole-genome duplication, followed by
chromosome copy number alterations in the cancer stem cell population, and accumulation of low numbers of somatic mutations,
even in therapy-resistant cases. These observations of heterogeneity at all stages of tumourigenesis should be considered when
treating patients with GCNIS-only disease, or with clinically overt NS.

British Journal of Cancer (2019) 120:444-452; https://doi.org/10.1038/s41416-019-0381-1

BACKGROUND

Malignant germ cell tumours of the adult testis, referred to as type
Il TGCTs of testicular germ cell cancer (TGCC), are the most
frequent cancer in young Caucasian males.! TGCC are thought to
be initiated during early embryogenesis affecting an embryonic
germ cell, and become clinically manifest during young adulthood
with an annual frequency of approximately 5-12 per 100,000 men
in the western world and may require “aggressive” medical
treatment. These cancers are clinically and histologically classified
into two variants, being seminoma (SE) and nonseminoma (NS).
Both arise from a common cancer stem cell, currently referred to
as germ cell neoplasia in situ (GCNIS),>> which resembles
totipotent primordial germ cells (PGCs)/gonocytes. Patients with
proven GCNIS have a 70% chance of progression to TGCC (both SE
and NS) within 7 years. SE consists of a homogeneous population
of cells with similarity to GCNIS and PGC/gonocytes. About 50% of
the TGCC patients present with a NS that can be composed of
different histological elements, embryonal carcinoma (EC), ter-
atoma (TE), yolk sac tumour (YST), and choriocarcinoma, either
pure or mixed. The EC is the pluripotent stem cell component of
NS, which can mimic normal early embryogenesis including the

formation of so-called embryonal bodies (EBs), and thereby give
rise to all differentiated components.>™

Although all TGCC, including mature TE, are in principle capable
to metastasise, about 80-85% of the SE patients and 55-60% of
the NS patients present with localised (stage I) disease. Patients
with metastatic TGCC are generally cured by standard treatment
regimens involving platinum compounds and additional surgery
for residual TE, while only few patients show resistance to
treatment.® So far, detailed studies into the molecular profile of
TGCCs and their progression stages were focused on specific
genes, like KIT” and TP5327'° and on the chromosomal constitu-
tion. Analyses have revealed many changes in the (relative)
number of individual chromosomes in the different tumour
components.>''~'® Gain of the short arm of chromosome 12 is a
hallmark of (invasive) TGCCs,'"” but as yet no causative gene(s)
have been identified. Information on driver mutations underlying
the development of these NS using exome sequencing is
Scarce'11f14,18720

In order to unravel the molecular heterogeneity of NS, we
extensively investigated four rare cases of primary therapy-
resistant NS and performed WGS on the primary cancer and
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targeted sequencing analyses on 42 enriched histological
components, precursor cell populations, and metastatic lesions
after treatment (Figs. 1a, b). Focus was on the early events of
tumour formation, the molecular heterogeneity within the primary
lesion and the retention of molecular markers in the metastatic
recurrences. Additionally, data from RNA expression (RNAseq) and
copy number alterations (CNA) from high-throughput DNA
methylation profiling and DEPArray™/LowPass WGS were inter-
rogated to decipher the evolution of the disease.

MATERIALS AND METHODS
A brief description is provided here. Further details are provided in
the Supplementary Methods.

Patient samples

NS samples of patients with established intrinsic resistance to
standard first-line chemotherapy (detailed in Supplementary
Methods) were included in this study. Use of tissue samples
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remaining after diagnosis for scientific reasons was approved by
Medical Ethical Committee of the Erasmus MC Rotterdam (The
Netherlands), permission 02.981. This included the permission to
use the secondary tissue without further consent. Samples were
used according to the “Code for Proper Secondary Use of Human
Tissue in The Netherlands” developed by the Dutch Federation of
Medical Scientific Societies (Version 2002, update 2011).

Omics analyses of patient samples

Purified tumour components (Supplementary Table S1), as defined
by an experienced pathologist (JW.0.), were isolated from frozen
tissue slices after staining for alkaline phosphatase enzyme
reactivity,”’ using laser capture micro dissection (Zeiss). Tumour
and paired normal DNA samples were whole-genome sequenced
(40 times coverage) and analysed at Complete Genomics Inc. (CG)
(Mountain View, CA, USA) using NCBI build 36.3 as human
reference genome and pipeline software version 2.0.2.22.22 Lists of
putative somatic DNA variants (SNVs) were established from the
WGS data as described in the Supplementary Methods. SNV were
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Dissection of nonseminoma (NS). a NS may consist of multiple histological elements (examples case T1382, TE and EC; case T618, germ

cell neoplasia in situ (GCNIS), OCT3/4 stained nuclei), which were each enriched by laser capture micro dissection. The primary NS was
subjected to WGS and the purified components to targeted sequencing using lon Torrent technology. b The results of the whole genome
sequencing (WGS) are shown per case. Complete genomics (CG) somatic DNA variant (SNV) were retrieved from CG output files, and putative
candidates were selected after visual inspection of the reads. SNV validation was performed by mutation-specific PCR, targeted DNA
sequencing and/or RNA sequencing (Supplementary Table S4). Structural variants (SVs) were confirmed for selected cases using targeted
sequencing. Mutations occurring near exon boundaries were evaluated for potential effect on splicing using Alamut Software. Details are
provided in Supplementary Tables S4-S6. The bottom panel shows the number of purified histological components isolated and analysed for
these cases. PBL peripheral blood leukocytes, NAP nonmalignant adjacent parenchyma. ¢ The mutational profiles of these four NS were
compared with the 30 COSMIC signatures described. The mutational signatures contributing significantly (>5%) are presented. In addition, the
SNV of NS and SE cases from the Taylor-Weiner study (*)'* were pooled for tumour subtype and similarly analysed. The number of SNV used
for the analysis is indicated below each bar. d, e Profiles of lesser allele frequencies (LAF) of heterozygote SNP and relative read frequencies of
SNV derived from targeted sequencing of primary NS (red) and dissected EC components (green) are shown. SNV are presented as filled
symbols (NS: yellow diamonds; EC: green squares). Positions are provided on chromosomes scaled according to size
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verified using mutation-specific quantitative real-time PCR,
targeted sequencing (Supplementary Tables S2 and S3), and
RNAseq. Structural variants were evaluated for gene fusions with
iFuse.”> Characterisation of the mutational signature was done by
comparison of the trinucleotide context of each SNV to the
established COSMIC signatures using the MutationalPatterns R
package (v1.0).%*

Targeted sequencing was performed by semiconductor sequen-
cing with the lon Torrent Personal Genome Machine with
supplier's materials and protocols (ThermoFisher Scientific) as
previously described.”> Amplicons were designed to cover
tumour-specific SNV, structural variants and heterozygote posi-
tions (Supplementary Table S3). Median sequencing depth was at
least 250 reads. Allele frequencies were established for the
heterozygous single-nucleotide polymorphisms (SNPs) in the
matched normal samples present on the amplicons. Details for
calling of SNP, SNV and structural variants in the targeted
sequencing experiments are provided in the Supplementary
Methods. Evolutionary trees of different samples of a specific
tumour were drawn based on the lesser allele frequencies (LAF)
and SNV profiles and supported by the TargetClone tool.?®
TargetClone was designed to reconstruct evolutionary trees for
multiple samples of a cancer using allele frequencies and SNV
(Supplementary Methods).

RNA samples of T6107 and T3209 were rRNA-reduced and lon
Proton sequenced (90 bases, 50 million mapped reads) using the
supplier's protocols and reagents (ThermoFisher Scientific). Gen-
eration of methylation profiles of primary tumour DNA was
performed as previously described®” or at the Microarray unit of
the Genomics and Proteomics Core Facility of the German Cancer
Research Centre (DKFZ, Heidelberg) strictly adhering to the
lllumina EPIC protocols for the T6107-YSTmeta. CNA based on
methylation intensities were resolved using the Conumee
package.”® DEPArray™ experiments on a T6107 metastatic
sample, and GCNIS and YST samples of T618 were performed by
Menarini Silicon Biosystems (Castel Maggiore, Italy), essentially as
described.?

RESULTS

Primary NS characteristics

To address tumour heterogeneity and progression, WGS data from
four primary chemo-naive NS were exploited. Comparison of the
primary tumours with the matched normal provided a set of
1239 somatic putative DNA variants (SNV) for these cases (Fig. 1b).
RNAseq, mutation-specific PCR and targeted sequencing experi-
ments validated 150 out 158 SNV and 9 out of 15 structural
variants (Fig. 1b, Supplementary Tables S4 and S5). The identified
mutations causing protein changes have been listed in Table 1.
Only four SNV resulted in protein truncation and another 13 were
predicted to be damaging (Supplementary Table S6). In addition,
detailed information regarding structural variants, LAF and
chromosome CNAs were obtained from the WGS and methylation
profiling (details in Supplementary Figs. S1 and S2). The
trinucleotide profile of single base SNV identified by WGS of the
four NS was determined and compared with the established set of
COSMIC mutational signatures.® In all cases (Fig. 1c), signature 3
contributed significantly or was the predominant signature.
Analysis of the pooled SNV (from whole-exome sequencing) of
independent cases of NS (N = 18) and SE (N = 18),'* also revealed
this signature to be the most prominent (Fig. 1c and further details
in Supplementary Fig. S3). This signature 3 is strongly associated
with mutations in BRCAT or BRCA2, genomic deletion and insertion
events smaller than 100kb, and a deficiency in homologous
recombination repair in breast cancer3' In the absence of
substantial numbers of indels and genomic deletion and insertion
events in our WGS data, additional support for recombination
repair deficiency is lacking. Furthermore, pathogenic somatic

mutations in BRCAT or BRCA2 were not observed in the four
included TGCC, although case T1382 carried a predicted, non-
pathogenic BRCA1 missense variant (Supplementary Table S6), nor
in the cases of the Taylor-Weiner study.'® In addition, promoter
hypomethylation and RNAseq reads observed for both genes did
not support loss of BRCA function (Supplementary Fig. S4).
Furthermore, we did not observe pathogenic mutations in other
genes responsible for homologous recombination repair defects,?
and transcripts of these genes were detected by RNAseq (data not
shown).

Molecular heterogeneity and evolution

For the study of the molecular heterogeneity within these
histologically complex primary NS (containing EC, EB, TE and
YST components, Fig. 1a), matched metastases and precursor
lesions, DNA was prepared from various micro- and macro-
dissected components (N=42, Figs. 1a, b and Supplementary
Table S71). The histological identity was determined by an
experienced pathologist, and using direct alkaline phosphatase-
staining for EC, EB and GCNIS in frozen tissue (examples in
Supplementary Fig. 55).2' To evaluate the allelic imbalances and
the presence of SNV in these enriched specimens, amplicons were
designed across the genome containing a tumour-specific SNV
and additional heterozygous SNPs (Supplementary Fig. S1 and
Supplementary Table S3). For the primary tumour DNA samples,
an excellent agreement between the LAF profiles of the WGS and
targeted analyses was observed (Supplementary Fig. S6). Analyses
of the enriched samples were focused on the LAF of germ line
heterozygote SNPs, the read frequencies of the SNV and the
presence of specific breakpoints. Furthermore, evolutionary trees
based on the LAF and the presence of SNV, and supported by
TargetClone, were generated for each case. Results of these
analyses will be discussed per case below.

T6107. The majority of the allelic imbalances and SNV found in
the primary cancer were present and more easily detected in the
enriched malignant histologies due to their increased purity and
the removal of contaminating normal cells (example in Fig. 1d).
Loss of heterozygosity (LOH) was clearly resolved for chromosome
(arm) 4q, 10, 11, 13 and 16q for the purified EC component. The
false colour plot showed extensive overlap in regional allelic
imbalances and SNV among the enriched histological components
of T6107 and compared with the primary NS (Figs. 2a, b and
Supplementary Fig. S7A). LOH on the chromosomes mentioned
above was preserved in all histological elements (homogeneously
red coloured blocks indicating LAF < 0.1, Fig. 2a). Sample EC21
displayed additional LOH resulting from copy losses of chromo-
somes arms 9q and 22g. In the GCNIS preparations (CIS30 and
FCIS31, Fig. 2a), very little overlap in LAF patterns with the primary
NS was observed and the majority of SNV were completely absent
(Fig. 2b). The YST metastasis in the lung (YSTmeta) showed minor
overlap with the primary NS and its histological components with
regard to LAF pattern and presence of SNV. The shared LOH of
chromosome arm 22q between EC21 and this metastasis
represented independent events based on the different parental
alleles retained (Supplementary Fig. S8). Presence of chromosome
arm 12p gain (Supplementary Fig. S9), and two SNV (Fig. 2b) in
this metastasis demonstrated a shared origin with the primary NS.
The copy number profiles of this lung metastasis and a prior
retroperitoneal lymph node metastasis with the histology of
mature TE displayed many novel alterations, including amplifica-
tion of the MDM2 gene region (details in Supplementary Fig. S9).
Immunohistochemistry (IHC) and fluorescent in situ hybridisation
(FISH) analysis confirmed the amplification of MDM2, and targeted
sequencing did not reveal TP53 mutation in the lung metastasis
(data not shown). An evolutionary tree for this case (Fig. 3) was
based on the general profiles of the LAF and SNV (Figs. 2a, c), and
required two unidentified EC precursors (ECx1 and ECx2) to
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Table 1. Somatic mutation-derived protein variants

Tumour Symbol ACC Mutation type NT AA Presence of SNV in
GCNIS Histology Meta
T1382 EIF5B NM_015904 Missense c541A>C p.N181H 1/1 7/7
TTN NM_003319 Missense c.5558T>A p.11853N 2/2 5/8
LPCAT1 NM_024830 Missense c.1129G>A p.E377K 2/2 7/7
LPCAT1 NM_024830 Missense c517G>C p.V173L 2/2 8/8
CHRNA2 NM_000742 Missense c.688G>A p.E230K 2/2 1/8
KAT6A NM_006766 Missense c.158T>C p.L53S 2/2 4/4
SYT7 NM_001252065 Missense c655G>A p.G219S 1/1 n.d.
BICD1 NM_001003398 Missense c490C>T p.R164W 2/2 1/8
FREM2 NM_207361 Missense c.7882C>T p.R2628W 2/2 5/6
POLR3K NM_016310 Stopgain c49G>T p.G17X 2/2 8/8
SNX20 NM_182854 Missense cI11T>A p.1304N 2/2 8/8
SETD6 NM_024860 Missense c.1318A>G p.l440V 2/2 0/6
CAS5A NM_001739 Missense c721G>A p.E241K 2/2 8/8
BRCA1 NM_007300 Missense c745A>G p.T249A 2/2 4/7
TMEM147 NM_032635 Missense c104G>A p.C35Y 2/2 11
SLCO4A1 NM_016354 Missense c175C>T p.L59F 2/2 8/8
T3209 MTOR NM_004958 Missense c3011G>C p.C1004S 0/1 13/13
NRXN1 NM_001135659 Missense c634G>T p.G212C n.d. 6/6
TAF7 NM_005642 Nonfrs del c.738_740del p.1247del
PDLIM7 NM_005451 Missense c422C>T p.P141L n.d. 11/12
CCKBR NM_176875 Missense c.1240C>G p.R414G n.d. 2/9
RNF219 NM_024546 Missense c.1940A>T p-Q647L n.d. 5/5
GCOM1 NM_001285900 Missense c.1027G>C p.E343Q 0/1 3/13
ABCC3 NM_003786 Acceptor c.2415-5C>T Unknown 0/1 13/13
ZNFX1 NM_021035 Frs del €.3592_3593del p.S1198AfsX71
SHOX NM_006883 Missense c310G>A p.V104M n.d. 8/8
T6107 CPSF3 NM_016207 Missense c762T>G p.D254E 0/2 6/6 0/1
UACA NM_018003 Missense c.2272G>C p.D758H n.d. 3/3 0/1
DNAJB1 NM_006145 Missense c.200A>G p.Y67C
T618 CROCC NM_014675 Nonfrs sub c.244_246 p.Q82del 3/3
ARHGEF10L NM_018125 Acceptor c-43-3C>T Unknown 0/3
MYOM3 NM_152372 Nonfrs sub ¢.3688_3689delinsAG p.Q1230R 0/3
TTF2 NM_003594 Missense c634C>A p.H212N 0/1
KIAA0226 NM_014687 Missense c.1963C>T p.H655Y 3/3
SMARCAD1 NM_001254949 Missense c226 A>G p.N76D
ASAP1 NM_001247996 Missense c933G>C p.Q311H 0/2
DNAJB5 NM_001135005 Frs sub ¢.1077_1093G p.Nfs?? 0/3
ZDHHC6 NM_022494 Missense c950G>A p-R317H
CLCF1 NM_001166212 Missense c468A>T p.E156D 0/3
NDUFV1 NM_007103 Acceptor c511-4G>A Unknown 1/2
LRRC10 NM_201550 Missense c.125G>A p.R42H 0/3
PIAS1 NM_016166 Missense c1712A>C p.D571A 0/3
KEAP1 NM_203500 Missense c610C>T p.R204W 3/3
CSRP2BP NM_020536 Stopgain c412G>T p.E138X 1/2
CSE1L NM_001316 Donor c16194+4A>T Unknown 3/3
APOL3 NM_145640 Missense c.1066 C > G p.L356V 0/3
CFP NM_002621 Missense c.1285G>T p.v429L 3/3

GCNIS germ cell neoplasia in situ, SNV somatic DNA variant
Somatic mutation of genes leading to (putative) protein changes per case. The mutation type, RNA nucleotide (NT) and amino-acid (AA) changes are indicated.
The last three columns provide the occurrence of the DNA mutation (samples with mutation/samples successfully sequenced) in the different enriched sample
types (GCNIS, histologies of the primary tumour, and metastases). n.d. = not detected, indicating that the sequencing of the specific target was not successful

447



Molecular heterogeneity and early metastatic clone selection in...
LCJ Dorssers et al.

448

>

a L R (o] w

— P &) © o~
8 % o g 5= 2 S g & 3 3
a0 8 2 R R 8 § » & 2 e 0§ 2 o ;
nm =2 O O O O O w u w 6 O < £ o o w O
Ao O @I W W W w R > Z420 O Z O =@ & z,4 O

= - L |

------ I < CPSF3
| E— — ]

195

N g gaooas o4 4 L 0OON O O » 0N =

O © ONOURW N =

NN RN e

n
N

o @
—
>
&

o

< KIAA0226

o
-

0.5

Fig. 2 False colour plots of allelic imbalances, somatic DNA variant (SNV) and structural variants in primary testicular germ cell cancer (TGCC)
(nonseminoma (NS)) and various purified tumour components of two cases (T6107 (panels a, b) and T618 (panels ¢, d)). Data from (tumour)
samples analysed more than once were averaged. Top panels a, ¢ Each line represents the amplicon averaged lesser allele frequencies (LAF) of
heterozygote SNPs using the LAF colour scheme in panel e (LAF). Blue indicates heterozygosity and red refers to loss of heterozygosity (LOH).
Ordering is based on chromosomal position (indicated on the right). For comparison, the 100 kb interval WGS LAF (CG-LAF) is also shown. In
addition, the WGS relative read coverage (CGrelCov) data of the primary NS are provided for the specific chromosomal regions using the
colour scheme (Rel Cov) in panel e. Missing data are white. Sample types have been marked by coloured dashed lines (germ cell neoplasia
in situ (GCNIS): orange, histological components: red and metastases: purple). (*) Formalin-fixed paraffin-embedded (FFPE) tissue blocks
derived DNA samples. Bottom panels b, d Occurrence of tumour-specific SNV and structural variants in the different tumour samples (grey
indicates absence, black indicates >3% of the reads carrying the variant, missing data in white). Tumour-specific structural variants are
indicated with green arrow heads. Genes with a mutation resulting in amino-acid change (T618: only those observed in GCNIS) have been
indicated (see Table 1). A red arrow marks a SNV present in all samples (except PBL) from case T6107 (chr19:56131557), residing in a 2-kb
region between two Zn-finger genes. The number at the bottom indicates the months after surgery of the primary tumour for the removal of
the metastasis. e Colour keys for the different categories. Sample information and targeted sequence data details are provided in

Supplementary Table S1 and Table S8

explain the variance between the primary NS components and the
YST lung metastasis. EC21 represented a separate progression line
with additional chromosome losses. Furthermore, the early ECx1
precursor containing few aberrations was the founder of the late
appearing lung metastasis (YSTmeta) and likely of the mature TE
in the lymph node metastasis (Supplementary Fig. S9), which both
lacked many of genomic marks of the primary tumour.

T3209. Detection of LOH (chromosomes 4, 14, 15 and 22) was
markedly improved for the enriched EC sample, with increased
read frequencies for most SNV (Fig. 1e). Absence of specific SNV in
this EC sample and present in low read frequencies (10-20%) in
the primary tumour indicated clonal variation. Major overlap in
LAF patterns (LOH on the above mentioned chromosomes) and
most SNV was observed for the enriched histological components
and the primary NS (Supplementary Fig. S7B). A single EB (EB23)
showed additional regions of LOH (involving chromosomes 1 and
5). The GCNIS preparations essentially lacked allelic imbalances
and SNV. The evolutionary tree for this case suggested separate
developmental lineages for EB23 and four samples of EC, TE and

YST (Fig. 3). The occurrence of very low frequency SNV (<5% of the
reads, details Supplementary Fig. S7B) in the GCNIS preparation
(which were abundant in the histological components), suggested
the presence of a minor population of further progressed GCNIS.

T618. Laser capture of the histological components in the
primary NS was not successful due to the presence of excess TE
of cartilage differentiation. Purification of YST cells was achieved
from FFPE sections using the DEPArray and provided copy number
profiles comparable to the primary NS (Supplementary Figs. S1C,
S2 and S10). Abundant numbers of GCNIS in the “normal” adjacent
parenchyma allowed for the preparation of these cancer stem
cells (Supplementary Fig. S5). Subtypes located isolated (CIS29),
basal (BCIS28) or floating (FCIS27) and probably reflecting their
progression state, were obtained.'” Inspection of the LAF profiles
showed increasing allelic imbalances up to LOH for chromosomes
4 and 5 in these GCNIS stages (Figs. 2¢, d). In addition, alterations
on chromosome arms 11 and 22qter, and seven SNV were
observed in these GCNIS. Copy number analysis of DEPArray
purified GCNIS did not reveal gain of chromosome arm 12p



Molecular heterogeneity and early metastatic clone selection in...
LCJ Dorssers et al.

T6107 T618
CIS30 GCNISx
FCIS31 7 SNV
1SNV l

BCIS28
CIS29
L&Y FCIS27
LOH
11qter/22qgter
ECx1
1 SNV
o4 LOH 13

12 SNV
LOH 4/10/11

YSTmeta
LOH
149/199/229B

T3209
Cls32

CIS73
6 SNV*

-

T1382

YST30
TE32
7 SNV

TE24/34
YST17/33/35
1SNV

Nonseminoma cases

Fig. 3 Evolution of nonseminoma (NS). Evolutionary trees for the different histological specimens for all cases are shown on this
developmental model. Colouring of boxes is according to sample type: germ cell neoplasia in situ (GCNIS; yellow), precursor embryonal
carcinoma (EC; light orange), primary tumour (dark orange) and metastasis (purple). The order and grouping of the samples is based on the
similarities in allele and somatic DNA variant (SNV) profiles (as shown in Fig. 2 and Supplementary Fig. S7) and supported by TargetClone
(Materials and methods section), and implementing the biological constraint for NS development that the differentiated components
(teratoma (TE) and yolk sac tumour (YST)) originated from an EC-type precursor. Samples with comparable profiles are grouped together. In
specific cases of samples with partially non-overlapping features (i.e. SNV and/or loss of heterozygosity (LOH)) without an immediate
precursor, a non-identified precursor (GCNISx or ECx) was inserted at the branch point in the tree (T6107, T618). Similarly, to comply with the
evidence that an EC is the precursor of TE and YST, a non-identified precursor ECx was introduced (T6107, T1382). Specific gains of LOH or SNV

compared with their immediate precursor are indicated.

*) indicates SNV present at very low read frequencies, suggesting polyclonality for

GCNIS or the presence of a minor subclone in some of the primary tumour components of T3209. For case T1382, a minimal tree is presented

with ordering of samples based on SNV only due to sequencing noise

(Supplementary Fig, S10). The evolutionary tree of this case (Fig. 3)
required the insertion of an unidentified precursor (GCNISx) as the
progressed state GCNIS (BCIS28 and FCIS27) lacked four SNV
(Fig. 2d) and showed loss of alleles on chromosome arms 11qg and
22qter, which were retained by the primary tumour (Supplemen-
tary Fig. S8). These data strongly suggest that the abundant basal
and floating GCNIS adjacent to the tumour mass represent a
precursor clone that did not progress to a full malignant state and
was not the founder of the primary NS.

T1382. The enriched samples were all derived from old FFPE
tissue blocks and showed more amplicon drop out and noisy LAF
data (Supplementary Fig. S7D). In spite of this limitation, the
enriched TE and EC histologies showed good overlap for LAF, SNV,
and breakpoints with the primary NS. A set of SNV, breakpoints
and regions of imbalance appeared preserved in some of the
metastases, while novel alterations were also observed (details in
Supplementary Fig. S7D). The evolutionary tree based primarily on
the SNV required the insertion of a non-identified EC precursor to
explain the differences between the primary NS components and
the metastases (Fig. 3).

DISCUSSION

Our studies on multiple samples of four cases of therapy-resistant
NS provided insight in the complexity of tumourigenesis (Fig. 4).
NS carried low numbers of SNV (~0.1 per Mb, Fig. 1b), somewhat
lower than reported and comparable to some of the paediatric
cancers and spermatocytic tumours.'*”'*2*3 The total number of
SNV with a predicted impact on the encoded protein (3-18,
Table 1) was similar to other reports."’™'® Overlap of mutated
genes belonging to specific pathways was not observed within

this small series of TGCC cases and was limited with genes
reported for primary untreated TGCC (ASAP1, BRCAI1, CCKBR,
CROCG, CSETL, KAT6A, KEAP1, MTOR, MYOM3 and TAF7).!!~'4203433

NS exhibited clonal heterogeneity, which did not correlate with
the histological subtypes (Fig. 3). This was expected because of EC
being the stem cell component of all differentiated NS elements in
the primary NS and different EC precursors providing independent
lineages of differentiated cells.>>® A typical example is provided by
the T3209 EB23, which resembles an early developing embryo
derived from a single EC with a different genomic make-up
(Supplementary Fig. S7B). Extensive intratumour heterogeneity
was also reported for non-small-cell lung cancer.>” Our analyses
also showed that metastatic clones can be derived from very early
cancer stem cells that are underrepresented or even absent in the
primary lesion, and not detected with the current approaches
(Fig. 4). Early disseminated cells have been shown to seed
metastases in models of breast, pancreatic, bladder and mela-
but appeared less predominant in breast cancer
patients.*

The comparison of the primary tumour and the highly enriched
tumour histologies revealed that the read frequencies of SNV on
the autosomes (even in regions with LOH) hardly ever exceeded
the 50% level (examples in Supplementary Figs. S1, S6 and S7),
indicating that always a wild-type copy of the particular gene was
retained within the cancer genome. Similarly, the relative read
frequencies of the SNV present in the GCNIS cells were low (<0.34
for case T618, Fig. 2d) and therefore likely limited to a single allele
copy. These results indicate that whole-genome duplication
preceded the gain of most somatic mutations.?>*”*> The single
SNV identified in the GCNIS of T6107 was present in high relative
read frequencies (up to 50%), suggesting that this mutational
event preceded genome duplication (Fig. 2b). Alternatively, this
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Nonseminoma model

Fig. 4 Nonseminoma (NS) evolution. A model of the different steps
in NS development from normal primordial germ cell (PGC)/
gonocytes to metastasised NS is shown. The model is based on
the available literature regarding early genome duplication,
acquisition of extra copies of the short arm of chromosome 12,
the pluripotent capacity of the embryonal carcinoma (EC),* and the
results from this study. Following initial whole-genome doubling,
during puberty chromosome loss may be the predominant way to
change the copy numbers in the formation of germ cell neoplasia
in situ (GCNIS) cancer stem cell (yellow). GCNIS represent a
polyclonal mixture of cells, some may remain dormant and others
may progress to malignancy. The gain of copies of 12p (12p* ") is a
hallmark of the precursor with invasive potential (light orange).
Further losses and gains of chromosomes or chromosome frag-
ments may contribute to the formation of the primary tumour with
its distinct histological components (orange) and the typical
metastases (purple). Somatic mutation appears to be limited and
occurring at later stages. The metastases may also originate from
precursor EC not detected in the primary tumour

specific variant may represent mosaicism resulting from somatic
mutation in early embryonic cells.**** Genome doubling may also
underlie development of oesophageal cancer following early TP53
inactivation.*” The status of the overrepresentation of the 12p
region in the purified cancer stem cells GCNIS remains uncertain,
but the observed balanced allele frequencies are in line with
absence of 12p gain (Figs. 2a, ¢ and Supplementary Fig. S8).
Furthermore, LowPass WGS on DEPArray purified T618 GCNIS,
revealed no gain of 12p and absence of the majority of CNA
present in the primary tumour (Supplementary Fig. S10). These
results are in agreement with the notion that accumulation of
chr12p copies coincides with acquirement of invasive behaviour
(Fig. 4)_17,46,47

Our data and the lack of recurrent driver mutations support the
hypothesis that whole-genome duplication is the primary event in
NS development (Fig. 4), to be followed by overall net chromo-
some copy losses.**® Proof for early whole-genome duplication
may be obtained using digital NGS based on Barcode-In-Genome
technology on many individual GCNIS to determine actual
chromosome copy numbers.*® Subsequently, gain of 12p copies
(which may be dynamic in subclones, details Supplementary
Fig. S7), gain of limited numbers of somatic mutations, and
additional CNA will trigger the development of the primary NS
(Fig. 4). This model is in agreement with the conclusions of Shen
et al.?° for the majority of the TGCTs. Only a fraction of KIT-mutated

SE may have acquired the mutation before whole-genome
duplication. In order to prevent accumulation of genomic
mutations in germ cells, active surveillance and removal of PGCs
with an aberrant genome is very efficient’®®' All PGCs are
completely de-methylated and considered to be prone to
aneuploidy,>® but incidence of TGCC is low in the male population.
Removal of aberrant GCNIS may require functional TP53, which
could be interrupted by gene mutation or by defined miRNAs.>***
In agreement with their extreme sensitivity to cisplatin-based
therapies, TP53 mutations are extreme!?/ rare in primary TGCC
indicating no selective pressure.'®'*** The presence of an
amplified MDM2 locus in two metastases of case T6107
(Supplementary Fig. S9) may have provided an alternative route
for inactivation of TP53 and therapy resistance.'®***> The BRCA-
like base substitution signature of this cancer hints at inefficient
homologous recombination repair.>® This BRCA-like signature was
not reported in a recent exome sequencing of TGCC.?° There is
currently no evidence for the direct involvement of the BRCA genes
(i.e., absent pathogenic gene mutation and no rearrangement
signature,®' and no association of TGCC with familiar BRCA1/2
mutations), although increased methylation of the BRCAT gene
promoter was observed in some NS without EC.%° It is tempting to
speculate that other components of this homologous recombina-
tion repair pathway may be affected and responsible for the
specific base substitution signature in the absence of direct
involvement of BRCA genes.'>° Of other genes linked to this repair
pathway,>® ATM, CHEK1 and MRE11 show aberrations (predomi-
nantly deep deletions) in approximately 10% of the NS>’ but
complete gene deletions were not observed in our cases (Figs S1
and S2) and normal levels of transcripts were detected, as well.
Alternatively, BRCA-related repair functions may be low or turned
off intrinsically in the embryonic PGC/gonocytes®® and during early
TGCC development, and thus contribute to the accumulation of
this specific pattern of base substitutions. Therefore, TGCC
development may be the result of the properties of the PGC (de-
methylated and reduced repair pathway), which allows the
tetraploid GCNIS to evade apoptosis and survive till puberty and
subsequently progress to malignancy due to genomic destabilisa-
tion.>® The (epi)-genetic triggers for destabilisation of the tetraploid
genome and initiation of the development of malignant clones
remain as yet largely unknown, although the induction of
mitogenic signalling by testosterone may contribute.

The observed heterogeneity in the primary tumour, metastases
and precursor lesions of NS may impact on clinical decisions and
treatment strategies. The occurrence of metastatic tumours with
little molecular overlap with the primary lesion indicates that
treatment of therapy-resistant recurrences should be targeted at
their molecular properties according to the concepts of persona-
lised medicine. The identification of abundant cancer stem cells
GCNIS, which did not contribute to the development of the NS
further complicates the clinical advice to patients with GCNIS-only
disease.®® In view of its tendency to progress in 70% of the
patients within 7 years, novel predictive markers for the GCNIS
progression are needed. The BRCA-like mutational signature in
TGCC indicative for reduced homologous recombination repair,
may be suggestive for combined use of poly ADP ribose
polymerase (PARP) inhibitors and platinum-based therapy?®®'
but requires additional support. Further studies into NS and SE
cases, with GCNIS adjacent to the primary tumour and different
histologies or localisation, are needed to identify reliable markers
for GCNIS progression, to unravel the critical steps for malignancy
and therapy resistance, and to decipher the origin of the BRCA-like
mutational signature of TGCC.
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