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Abstract

Background

Neoadjuvant chemotherapy (NAC) for muscle-invasive bladder cancer (MIBC) provides a

small but significant survival benefit. Nevertheless, controversies on applying NAC remain

because the limited benefit must be weight against chemotherapy-related toxicity and the

delay of definitive local treatment. Therefore, there is a clear clinical need for tools to guide

treatment decisions on NAC in MIBC. Here, we aimed to validate a previously reported

20-gene expression signature that predicted lymph node-positive disease at radical cystect-

omy in clinically node-negative MIBC patients, which would be a justification for upfront

chemotherapy.

Methods

We studied diagnostic transurethral resection of bladder tumors (dTURBT) of 150 MIBC

patients (urothelial carcinoma) who were subsequently treated by radical cystectomy and

pelvic lymph node dissection. RNA was isolated and the expression level of the 20 genes

was determined on a qRT-PCR platform. Normalized Ct values were used to calculate a risk

score to predict the presence of node-positive disease. The Cancer Genome Atlas (TCGA)

RNA expression data was analyzed to subsequently validate the results.

Results

In a univariate regression analysis, none of the 20 genes significantly correlated with node-

positive disease. The area under the curve of the risk score calculated by the 20-gene

expression signature was 0.54 (95% Confidence Interval: 0.44-0.65) versus 0.67 for the

model published by Smith et al. Node-negative patients had a significantly lower tumor

grade at TURBT (p = 0.03), a lower pT stage (p<0.01) and less frequent lymphovascular
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invasion (13% versus 38%, p<0.01) at radical cystectomy than node-positive patients. In

addition, in the TCGA data, none of the 20 genes was differentially expressed in node-nega-

tive versus node-positive patients.

Conclusions

We conclude that a 20-gene expression signature developed for nodal staging of MIBC at

radical cystectomy could not be validated on a qRT-PCR platform in a large cohort of

dTURBT specimens.

Introduction

Muscle-invasive bladder cancer (MIBC) comprises 20-25% of all newly diagnosed bladder can-

cers (urothelial carcinoma). Curative treatment options are few and survival is highly depen-

dent on radical surgery and accompanying lymph node status. Patients having node-positive

disease at radical cystectomy have a poor outcome. A large study on recurrence after cystect-

omy showed that around 80% of the cases with pathological node-positive disease (pN1-3)

recurred versus only 20% of pathological node-negative organ-confined disease [1]. To eradi-

cate micro metastases and thereby reducing the risk of node-positive disease at radical cystect-

omy, radical surgery can be preceded by cisplatin-based neoadjuvant chemotherapy (NAC). A

clinical trial meta-analysis showed that about eight out of 100 patients with node-positive dis-

ease could benefit from upfront chemotherapy [2]. However, controversies on the use of NAC

in MIBC remain because the survival benefit is small. A neoadjuvant regimen of cisplatin,

methotrexate and vinblastine was shown to give a reduction in the risk of death (HR: 0.84) and

an absolute increase in 10-year overall survival from 30% to 36% in a large multicenter ran-

domized trial [3]. On the contrary, patients who do not respond to NAC experience a delay

in time to curative surgery while being exposed to treatment-related toxicity. The limited sur-

vival benefit and the accompanying toxicities render many physicians reluctant to apply NAC

for non-metastatic MIBC. As a result, the use of NAC in MIBC greatly varies across centers.

Therefore, there is a clear clinical need for tools to guide treatment decisions on NAC in

MIBC.

In other tumor types, several commercially available gene expression assays are used in clin-

ical practice. In prostate cancer, Prolaris1 and OncotypeDx Prostate1 can be used for clini-

cal decision making on surveillance of primary prostate cancer and Decipher1 for clinical

decisions on adjuvant therapy in surgically treated patients [4–6]. In breast cancer, assays such

as OncotypeDx1 and MammaPrint1 have been clinically implemented [7]. In bladder can-

cer, a 12-gene expression signature to predict the outcome in non-muscle invasive bladder

cancer was developed on a microarray platform and transferred to a qRT-PCR assay [8].

Although this 12-gene signature is still in need of further validation, it does suggest a potential

role for gene expression assays in bladder cancer. Further, a 20-gene expression signature was

developed to predict the presence of lymph node metastases at radical cystectomy in clinically

node-negative MIBC patients. This signature might have the potential to be used to select

patients for NAC [9]. Smith et al identified differentially expressed genes by microarray on 32

pairs of fresh frozen (FF) and formalin-fixed paraffin embedded (FFPE) tissues from three dif-

ferent cohorts of cystectomy specimens. Since NAC is administered before radical cystectomy,

the selection for NAC would have to take place before cystectomy, i.e. after diagnostic trans-

urethral resection of the primary bladder tumor (dTURBT). Further, to clinically implement

Gene expression to predict nodal disease in bladder cancer is clinically not applicable
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such a signature a less complex laboratory assay on paraffin-embedded tissue samples is man-

datory. Therefore, we aimed to validate this 20-gene expression signature on a qRT-PCR plat-

form in a large cohort of 150 FFPE dTURBT specimens of MIBC patients who subsequently

underwent radical cystectomy and pelvic lymph node dissection.

Materials and methods

Patient selection and data collection

This study was approved by the Erasmus MC institutional review board (MEC-2014-641),

samples were collected and analyzed according to the code of conduct for responsible use of

left over materials [10]. As part of standard procedure, all patients were informed and offered

an option to opt out. Patients that opted out, by written or verbal notification, were excluded

from the study. In total, 201 patients who were diagnosed with MIBC (urothelial carcinoma)

and who were treated by radical cystectomy and pelvic lymph node dissection were retrospec-

tively collected for the present study. None of the patients had received NAC. In seven patients,

the FFPE blocks of the dTURBT could not be retrieved. Of the remaining 194 patients, 30

patients were excluded because the tumor area did not fulfill the minimum demand of at least

70% tumor cells or the RNA quality was insufficient to complete the analyses. Another 14

patients had to be excluded because the lymph node status at time of cystectomy could not be

retrieved from the pathology reports. Therefore, 150 patients were included in the qRT-PCR

analyses. Based on reliability criteria (see RNA expression data analysis) another 11 patients

were excluded from the statistical analysis leaving 139 patients for the final analyses (Fig 1).

RNA expression data

The 20 genes included in the assay were: TOX3, SLC11A2, FAM36A/COX20, LIMCH1, RAB15,

AVL9, PCMTD2, PTHLH,DPP4, PCDHGA10,MT1E,MAP4K4, SLC16A1, BST2,MMP14,

IFI27,NCLN,HLAG, RRBP1 and ICAM1. The Taqman assays were chosen based on the Affi-

metrix probes used by Smith et al [9] and were selected by best coverage and exon spanning.

First, the qRT-PCR of the 20 genes was optimized using cell line RNA (TCCSUP) and pooled

FFPE derived tumor RNA by dilution series and calibration lines per gene. Then, all FFPE

tumor samples (H&E slides) were centrally reviewed to select areas that contained at least 70%

tumor cells. Of these tumor cell areas, a 2.2-mm core biopsy was taken (Beecher Instru-

ments1, Silver Spring, MD, USA). The core was deparaffinized and RNA was isolated by

High Pure FFPE RNA Micro Kit (Roche Applied Science1, Mannheim, Germany) according

to the manufacturer’s protocol. The RNA concentration was measured using the Qubit RNA

Assay (Invitrogen, Ltd, Paisley UK). Next, total RNA was reverse transcribed and cDNA was

synthesized using a pool of 22 Gene Expression Taqman assays (20 genes + 2 housekeeping

genes). The assay was done in two replicates for all samples. Then, 2 μl of the cDNA was pre-

amplified using Pooled Gene Expression TaqMan assays and TaqMan PreAmp Master Mix

(Applied Biosystems, Foster City, USA). Amplification was done in 15 cycles of 15 seconds at

95˚C and 4 minutes at 60˚C each. Pre-amplification was then followed by denaturation of 10

minutes at 99.9˚C. Quantitative qRT-PCR was done in duplicate using the 7500 FAST Real

Time PCR System (Applied Biosystems, Foster City, USA) including the preAmp cDNA, Taq-

Man Universal Master MIX II and single Gene Expression TaqMan assays (both Applied Bio-

systems, Foster City, USA). For normalization purposes, the housekeeping genes HPRT, ACTB
and a plate control (T24 bladder cancer cell line RNA) was also included in the assay [11]. Two

patient samples were run per plate, see for the plate design S1 Fig. The qRT-PCR was done

under the following conditions: 10 minutes at 95˚C, 40 cycles of 15 seconds at 95˚C and 1 min-

ute at 60˚C. The threshold for determining the Ct value was set at 0.05. Since the amplification
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efficiency of the different assays was good, the comparative delta Ct method was used to quan-

tify the gene expression levels.

RNA expression data analysis

The qPCR data were analyzed and visualized using the R/Bioconductor package HtqPCR ver-

sion 1.26.0 [12]. Sample data were split according to the qPCR plate design. A qPCR value was

set to its replicated Ct-value if the qPCR result was undetermined. However, if both replicated

Ct-values were undetermined both Ct-values were set to 35 and were marked as undeter-

mined. The qPCR data were set as unreliable if the Ct value was outside a confidence interval

of 95% within each transcript. Samples were discarded if the housekeeping genes ACTB and

HPRT had two or more data points that were undetermined or unreliable.

Correlation plots were generated using the Pearson’s product-moment correlation coeffi-

cient values (r) and the subsequent hierarchical clustering was employed through complete

linkage using the 1-r distances. Since ACTB expression analysis was the highest expressed gene

and had the least missing values, all assays were normalized over the average ACTB Ct-value

resulting in a ΔCt-value. Overall, the gene expression analysis was robust within each patient

as depicted by the plots of the duplicate samples per patient (S2 Fig).

For each patient a risk score was calculated using the normalized Ct values based on the for-

mula: the average ΔCt-value of the genes downregulated in lymph node-positive (LN+) tumors

Fig 1. Flowchart of the selection of patients for the present study. UC: Urothelial Carcinoma, dTURBT: diagnostic

transurethral resection of a bladder tumor, LN: lymph node.

https://doi.org/10.1371/journal.pone.0174039.g001
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minus the average ΔCt-value of the genes upregulated in LN+ tumors according to Smith et al
[9]. This formula was previously performed for validating microarray data using qPCR data

[8]. Subsequently, using the risk score a logistic regression analysis was performed to predict

the LN status. The area under the Receiver Operating Characteristic (ROC) curve was calcu-

lated and compared to the Area Under the Curve (AUC) reported by Smith et al [9].

The Cancer Genome Atlas (TCGA) clinical data and mRNA expression data was down-

loaded with CGDSR R package version 1.2.5 (https://github.com/cBioPortal/cgdsr) [13]. The

lymph node-positive group was indicated by N1-3 and the lymph node-negative group by N0.

The beeswarms were plotted with the R package beeswarm version 0.2.3 (https://github.com/

aroneklund/beeswarm) and the Mann-Whitney U test was applied to compare lymph node-

positive with lymph node-negative patients. Statistical analyses were performed using SPSS

for Windows (IBM Corp. Released 2012. IBM SPSS Statistics for Windows, Version 21.0.

Armonk, NY: IBM Corp) and R statistical software version 3.3.1 (R Core Team, 2016), which

was also used for plotting the data.

Results

Patient and tumor characteristics

The clinical and histopathological characteristics of the 139 included patients are described in

Table 1. The mean age was 64 years and 111 (80%) patients were male. None of the patient

characteristics significantly differed between node-positive and node-negative patients. Node-

negative patients had a significantly lower tumor grade at TURBT (p = 0.03), a significantly

lower pT stage disease at radical cystectomy (p<0.01) and less frequent lymphovascular inva-

sion at radical cystectomy than node-positive patients (13% versus 38%, p<0.01).

The median RNA yield was similar for both node-negative and node-positive patients: 606

ng/μL (range 32-5360) versus 428 ng/μL (range 44-3000), p = 0.81).

20-gene expression signature validation

After normalization, the mean expression level differences per gene for node-positive versus

node-negative patients were plotted in a bar plot (Fig 2). The overall risk score per patient was

calculated and a ROC curve was used to visualize the discriminatory value of the overall risk

score. The predictive capacity of this risk score was minimal with an AUC of 0.54 (95% Confi-

dence Interval (CI): 0.44-0.65, Fig 3). Of the 20 genes included in the model, normalized BST2
and IF127ΔCt-values were the best performing individual predictors resulting in an odds ratio

of 1.10 (95% CI: 0.96-1.25) and 1.11 (95% CI: 0.95-1.30) respectively (Table 2). Multivariate

analysis of the ΔCt-values of these two genes combined resulted in an AUC of 0.59 (95% CI:

0.49-0.69).

Beeswarm plots of the different genes showed the distribution of ΔCt-values for node-posi-

tive and node-negative samples per gene (BST2 and IF127 are shown in Fig 4, whereas all

genes are shown in S3 Fig). Distribution of the ΔCt-values in these plots showed major overlap

in all genes with some outliers. Mean and median results of the ΔCt-values showed similar

trends in most genes (node-positive versus node-negative) with some exceptions (e.g. TOX3,

median expression level higher in node-positive versus node-negative, mean expression level

lower in node-positive versus node-negative).

Pearson correlation analysis showed significant positive correlation in a cluster of eight

genes (Fig 5). Of these eight genes, five were determined as upregulated (AVL9, PCMTD2,

FAM36A, LIMCH1, RAB15) in node-positive disease and three were determined as downregu-

lated (NCLN,MAP4K4,MMP14) in node-positive disease by Smith et al [9].

Gene expression to predict nodal disease in bladder cancer is clinically not applicable
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20-gene expression signature and validation in TCGA

The TCGA gene expression data by RNA sequencing from 408 chemo-naïve cystectomy speci-

mens is publicly available (12) and was used as an additional external validation cohort. All 20

genes from the 20-gene expression signature and necessary clinical data were available for 365

Table 1. Patient and tumor characteristics of all included patients with lymph node-negative or lymph node-positive disease (n = 139). The p-value

indicates the (non)significant differences between both groups.

LN negative (n = 91) LN positive (n = 48) p-value

Patient characteristics

Age Mean (range) 65 (32-83) 63 (37-81) 0.12

N (%) N (%)

Gender Male 74 (81) 37 (77) 0.35

Female 17 (19) 11 (23)

Smoking Current 40 (44) 12 (25) 0.15

Former 13 (14) 11 (23)

Never 12 (13) 7 (15)

Unknown 26 (29) 18 (38)

dTURBT characteristics

Clinical Stage T2 91 (100) 47 (98) 0.35

T3 - 1 (2)

Grade (WHO 1973) G2 8 (9) 2 (4) 0.03

G3 74 (81) 46 (96)

Gx† 9 (10) -

Concomitant CIS Yes 16 (18) 14 (29) 0.49

No 63 (70) 33 (69)

Unknown 3 (3) 1 (2)

Cystectomy characteristics

Pathological Stage T0 11 (12) 1 (2) <0.01

Tis 2 (2) -

T1 4 (4) -

T2 20 (22) 7 (15)

T3 21 (23) 17 (35)

T4 8 (9) 6 (13)

Tx† 25 (28) 17 (35)

Grade (WHO 1973) G2 6 (7) 1 (2) 0.70

G3 47 (52) 29 (60)

Gx† 38 (42) 18 (38)

Concomitant CIS Yes 22 (24) 11 (23) 1.00

No 11 (12) 5 (10)

Unknown 58 (64) 32 (67)

LVI Yes 12 (13) 18 (38) <0.01

No 14 (15) 2 (4)

Unknown 65 (72) 28 (58)

Total LN dissected Mean (range) 16 (2-40) 15 (2-33) 0.94

Total LN positive Mean (range) - 2 (1-14) <0.01

Sample characteristics

RNA yield (ng/μl) Median (range) 606 (32-5360) 428 (44-3000) 0.81

LN: lymph nodes, CIS: carcinoma-in-situ, LVI: lymphovascular invasion

†: stage and/or grade not specified

https://doi.org/10.1371/journal.pone.0174039.t001
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MIBC samples. Beeswarm plots of the 20 genes of interest showed a similar overlap in data

points (S4 Fig). Gene expression levels did not differ significantly between node-positive and

node-negative patients for any of the genes (Mann Whitney-U-test, range p-values 0.07-0.93,

S4 Fig). Pearson correlation analysis did not convincingly substantiate the positive correlations

in the eight genes found in our data (except LIMCH1 and RAB15). It did show some correla-

tion between a number of other genes (e.g. ICAM,DPP4. TOX3) (S5 Fig).

Technical evaluation

Since there were no major differences in patient and tumor characteristics between node-neg-

ative and node-positive patients, we checked the data for possible technical confounders that
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might have influenced the gene expression levels. We hypothesized that the originating hospi-

tal might have influenced the RNA quantity and quality of the samples, for instance by differ-

ences in fixation protocols. Since most samples originated from Erasmus MC (35%), we

repeated the ROC analysis for Erasmus MC archival material only (n = 37 node-negative and

n = 11 node-positive) as an attempt to rule out this bias. The predictive capacity was margin-

ally poorer in this more homogeneous but significantly smaller sample set (AUC 0.52, 95% CI:

0.31-0.72).

ROC AUC 0.54
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Fig 3. Model performance represented by the ROC curve. The predictive capacity of the 20-gene expression signature is represented

by a ROC curve with an AUC of 0.54 (95% CI: 0.44-0.65).

https://doi.org/10.1371/journal.pone.0174039.g003
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Discussion

Curative treatment options for MIBC are few and survival is highly dependent on radical sur-

gery and lymph node status. The presence of micro-metastasis in lymph nodes could be an

Table 2. Univariate regression analysis of theΔCt-values of the 20 single genes predicting node-posi-

tive disease at radical cystectomy (n = 139).

Gene OR (95% CI) p-value logistic regression

TOX3 0.98 (0.92-1.05) 0.57

SLC11A2 0.98 (0.76-1.28) 0.90

FAM36A 1.02 (0.87-1.18) 0.85

LIMCH1 1.05 (0.94-1.16) 0.40

RAB15 1.00 (0.88-1.13) 0.96

AVL9 0.99 (0.91-1.09) 0.90

PCMTD2 1.00 (0.91-1.11) 0.96

PTHLH 0.99 (0.87-1.13) 0.90

DPP4 0.99 (0.91-1.08) 0.81

PCDHGA10 1.01 (0.92-1.11) 0.78

MT1E 1.03 (0.95-1.13) 0.47

MAP4K4 0.97 (0.82-1.14) 0.70

SLC16A1 1.03 (0.95-1.12) 0.50

BST2 1.10 (0.96-1.25) 0.19

MMP14 0.99 (0.89-1.09) 0.80

IFI27 1.11 (0.95-1.30) 0.19

NCLN 0.96 (0.76-1.22) 0.74

HLA_G 1.01 (0.94-1.10) 0.73

RRBP1 0.99 (0.80-1.22) 0.93

ICAM1 1.05 (0.94-1.17) 0.42

https://doi.org/10.1371/journal.pone.0174039.t002

Fig 4. Beeswarm plots for BST2 and IF127 showing the distribution ofΔCt values for node-negative versus node-positive patient samples. The

box indicates the upper and lower quartiles of distribution. The solid line indicates the median and the dotted line indicates the mean ΔCt value.

https://doi.org/10.1371/journal.pone.0174039.g004
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additional argument to justify the administration of NAC before radical surgery. There is a

clear clinical need to have tools that could aid in the decision whether or not to give NAC. In

the present study, we aimed to validate a 20-gene expression signature, which previously was

shown to predict the presence of lymph node metastases at cystectomy in clinically node-nega-

tive MIBC patients [9].

Since the dTURBT represents the starting point for treatment decisions in MIBC patients,

we used RNA isolated from a large cohort of dTURBT and not radical cystectomy specimens.

In addition, we aimed to validate the 20-gene expression signature using qRT-PCR, which is

an easier to use technology than microarray analysis and is being used in many pathology
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Fig 5. Pearson’s product moment correlation coefficient matrix showing a cluster of eight highly positively

correlated genes (AVL9, PCMTD2, FAM36A, LIMCH1, RAB15, NCLN, MAP4K4, MMP14) (r = 0.66–0.96).

https://doi.org/10.1371/journal.pone.0174039.g005
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laboratories around the world. Our data showed robust performance of the qRT-PCR per-

formed: 1) the dilution series and calibration plots in the optimization of the qRT-PCR showed a

good quality in the FFPE-derived RNA samples; 2) the gene plots of the duplicate samples per

patient also showed a near optimal result as robust measurements in the RT-qPCR. Nevertheless,

we were unable to validate the predictive capacity of the previously published 20-gene expression

signature. Smith et alwho obtained the 20-gene expression signature and accompanying cut-offs

by optimization in two independent training cohorts of archival FFPE cystectomy specimens

and one additional test cohort of 185 cystectomy specimens described an AUC of 0.67 (95% CI:

0.60-0.75) [9]. In contrast, our expression model only reached an AUC of 0.54 (95% CI: 0.44-

0.65). In addition, analysis of the TCGA expression data in 365 MIBC patients also did not show

a difference between node-positive and node-negative patients based on the suggested 20 genes.

Recently, Seiler et al published a study that attempted to design another gene expression sig-

nature to predict the presence of lymph node metastases at time of cystectomy [14]. Seiler et al
used RNA isolated from cystectomy specimens for a whole transcriptome approach in order to

include also non-coding transcripts. This approach resulted in a 51 K-nearest neighbor classi-

fier (KNN51). Of the 51 genes included in this signature, none overlapped with the 20 genes

from the 20-gene expression signature of Smith et al [9, 14]. However, Seiler et al did attempt

to validate the 20-gene expression signature. The 20-gene expression signature had an AUC of

0.46 and a non-significant OR of 1.39 versus an AUC of 0.82 and an OR of 2.65 (p<0.01) for

the KNN51 model [14]. A number of important differences should be noted between the study

of Seiler et al and our study. The platform used by Seiler et al was whole transcriptome expres-

sion analysis, a laborious technique that is not widely available for standard diagnostic proce-

dures in contrast to the qRT-PCR technology we used. Further, Seiler et al like Smith et al used

radical cystectomy for their analysis and not dTURBT specimens we used. As the authors

stated in their conclusions, the KNN51 expression signature should also first be validated on

dTURBT specimens before implementation in clinical practice is possible.

In general, the discordance between the study by Smith et al and our current study does not

undermine the value of the primary study, given the different methodologies. However, we

believe it does illustrate the practical limitations and the difficulties related to translation into

the clinical setting. Several other hypotheses could be raised for the lack of validation of the

predictive gene expression model in our study. In general, MIBC is known to be a heteroge-

neous cancer in terms of biological behavior. Even in similar histological subtypes, the biologi-

cal profile of the tumor may differ greatly. Recent publications identified the presence of very

distinct molecular subtypes in MIBC having different phenotypes and accompanying biologi-

cal behavior [15, 16]. These molecular subtypes might be differently distributed among the

different datasets that were used to develop and validate the 20-gene expression signature. Sec-

ondly, the punches taken from the dTURBT samples might not have portrayed the overall

tumor expression levels due to intra-tumor heterogeneity. Also, the punch taken from the

FFPE TURBT material could have been contaminated by normal cells. We cannot fully ex-

clude this possibility, even though we carefully selected areas of at least 70% tumor cells and

we punched centrally in the tumor sections. Thirdly, from a statistical point of view, robustness

of the predictive model would increase if gene expression could be defined as either ‘on’ or

‘off’. The subtle differences in higher or lower expression of certain genes in node-positive ver-

sus node-negative samples probably led to part of the frailty of the model. Lastly, correlation

between different genes in this expression signature could suggest a biological interaction,

such as cross-communicating pathways. Even though we could not confirm this finding in the

TCGA data and this data was not available for the model presented by Smith et al. Multi-col-

linearity between different components of a predictive model risks overestimation of the pre-

dictive capacity of a model and should therefore be corrected for in the development process.
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The present study showed the difficulty of validating gene expression data, not only in an

independent patient cohort but also on a different platform. In line with the whole transcrip-

tome approach by Seiler et al on 199 patients and the RNA sequencing data of 365 patients of

TCGA, we were unable to validate the 20-gene signature on a qRT-PCR platform in 139 MIBC

patients who underwent dTURBT. We therefore conclude that a previously developed 20-gene

expression signature that predicted the presence of lymph node metastases at pelvic lymph

node dissection and radical cystectomy in MIBC patients who were clinically node-negative is

clinically not applicable and cannot serve as a tool to guide treatment decisions on NAC in

MIBC patients.
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