5,083 research outputs found

    An improved vitrification protocol for equine immature oocytes, resulting in a first live foal

    Get PDF
    Background: The success rate for vitrification of immature equine oocytes is low. Although vitrified-warmed oocytes are able to mature, further embryonic development appears to be compromised. Objectives: The aim of this study was to compare two vitrification protocols, and to examine the effect of the number of layers of cumulus cells surrounding the oocyte during vitrification of immature equine oocytes. Study design: Experimental in vitro and in vivo trials. Methods: Immature equine oocytes were vitrified after a short exposure to high concentrations of cryoprotective agents (CPAs), or a long exposure to lower concentrations of CPAs. In Experiment 1, the maturation of oocytes surrounded by multiple layers of cumulus cells (CC oocytes) and oocytes surrounded by only corona radiata (CR oocytes) was investigated. In Experiment 2, spindle configuration was determined for CR oocytes vitrified using the two vitrification protocols. In Experiment 3, further embryonic development was studied after fertilisation and culture. Embryo transfer was performed in a standard manner. Results: Similar nuclear maturation rates were observed for CR oocytes vitrified using the long exposure and nonvitrified controls. Furthermore, a lower maturation rate was obtained for CC oocytes vitrified with the short exposure compared to control CR oocytes (P = 0.001). Both vitrification protocols resulted in significantly higher rates of aberrant spindle configuration than the control groups (P<0.05). Blastocyst development only occurred in CR oocytes vitrified using the short vitrification protocol, and even though blastocyst rates were significantly lower than in the control group (P<0.001), transfer of five embryos resulted in one healthy foal. Main limitations: The relatively low number of equine oocytes and embryo transfer procedures performed. Conclusions: For vitrification of immature equine oocytes, the use of 1) CR oocytes, 2) a high concentration of CPAs, and 3) a short exposure time may be key factors for maintaining developmental competence

    Kamere âşık

    Get PDF
    Paul de Kock'un Tercüman-ı Hakikat'te yayımlanan Kamere Âşık adlı romanının ilk ve son tefrikalar

    Extended Smoothed Boundary Method for Solving Partial Differential Equations with General Boundary Conditions on Complex Boundaries

    Full text link
    In this article, we describe an approach for solving partial differential equations with general boundary conditions imposed on arbitrarily shaped boundaries. A continuous function, the domain parameter, is used to modify the original differential equations such that the equations are solved in the region where a domain parameter takes a specified value while boundary conditions are imposed on the region where the value of the domain parameter varies smoothly across a short distance. The mathematical derivations are straightforward and generically applicable to a wide variety of partial differential equations. To demonstrate the general applicability of the approach, we provide four examples herein: (1) the diffusion equation with both Neumann and Dirichlet boundary conditions; (2) the diffusion equation with both surface diffusion and reaction; (3) the mechanical equilibrium equation; and (4) the equation for phase transformation with the presence of additional boundaries. The solutions for several of these cases are validated against corresponding analytical and semi-analytical solutions. The potential of the approach is demonstrated with five applications: surface-reaction-diffusion kinetics with a complex geometry, Kirkendall-effect-induced deformation, thermal stress in a complex geometry, phase transformations affected by substrate surfaces, and a self-propelled droplet.Comment: This document is the revised version of arXiv:0912.1288v
    corecore