417 research outputs found

    Modeling the combined effect of RNA-binding proteins and microRNAs in post-transcriptional regulation

    Get PDF
    Recent studies show that RNA-binding proteins (RBPs) and microRNAs (miRNAs) function in coordination with each other to control post-transcriptional regulation (PTR). Despite this, the majority of research to date has focused on the regulatory effect of individual RBPs or miRNAs. Here, we mapped both RBP and miRNA binding sites on human 3′UTRs and utilized this collection to better understand PTR. We show that the transcripts that lack competition for HuR binding are destabilized more after HuR depletion. We also confirm this finding for PUM1(2) by measuring genome-wide expression changes following the knockdown of PUM1(2) in HEK293 cells. Next, to find potential cooperative interactions, we identified the pairs of factors whose sites co-localize more often than expected by random chance. Upon examining these results for PUM1(2), we found that transcripts where the sites of PUM1(2) and its interacting miRNA form a stem-loop are more stabilized upon PUM1(2) depletion. Finally, using dinucleotide frequency and counts of regulatory sites as features in a regression model, we achieved an AU-ROC of 0.86 in predicting mRNA half-life in BEAS-2B cells. Altogether, our results suggest that future studies of PTR must consider the combined effects of RBPs and miRNAs, as well as their interactions.No sponso

    Vascular remodeling and intimal hyperplasia in a novel murine model of arteriovenous fistula failure

    Get PDF
    ObjectiveThe arteriovenous fistula (AVF) still suffers from a high number of failures caused by insufficient outward remodeling and intimal hyperplasia (IH) formation from which the exact mechanism is largely unknown. A suitable animal model is of vital importance in the unraveling of the underlying pathophysiology. However, current murine models of AVF failure do not incorporate the surgical configuration that is commonly used in humans. Because the hemodynamic profile is one of the key determinants that play a role in vascular remodeling in the AVF, it is preferable to use this same configuration in an animal model. Here we describe a novel murine model of AVF failure in which the configuration (end-to-side) is similar to what is most frequently performed in humans.MethodsAn AVF was created in 45 C57BL/6 mice by anastomosing the end of a branch of the external jugular vein to the side of the common carotid artery with interrupted sutures. The AVFs were harvested and analyzed histologically at days 7, 14, and 28. Identical veins of unoperated-on mice served as controls. Intravenous near-infrared fluorescent fluorophores were used to assess the patency of the fistula.ResultsThe patency rates at days 7, 14, and 28 days were 88%, 90%, and 50%, respectively. The mean circumference increased up to day 14, with a maximum 1.4-fold increase at day 7 compared with the control group (1.82 ± 0.7 vs 1.33 ± 0.3 mm; P = .443). Between days 14 and 28, the circumference remained constant (2.36 ± 0.2 vs 2.45 ± 0.2 mm; P = .996). At 7 days after surgery, the intimal area consisted mainly of an acellular layer that was structurally analogous to a focal adherent thrombus. Starting at 14 days after surgery, venous IH increased significantly compared with the unoperated-on group (14 days: 115,090 ± 22,594 μm2, 28 days: 234,619 ± 47,828 μm2, unoperated group: 2368 ± 1056 μm2; P = .001 and P < .001, respectively) and was mainly composed of cells positive for α-smooth muscle actin. We observed leukocytes in the adventitial side of the vein at all time points.ConclusionsOur novel murine AVF model, which incorporates a clinically relevant configuration of the anastomosis, displays similar features that are characteristic of failing human AVFs. Moreover, our findings suggest that coagulation and inflammation could both potentially play an important role in the formation of IH and subsequent AVF failure. Near-infrared fluoroscopy was a suitable alternative for conventional imaging techniques. This murine AVF-model is a valuable addition to the AVF animal model arsenal.Clinical RelevanceThe autologous arteriovenous fistula is considered the preferred choice for vascular access in hemodialysis. However, this type of vascular access suffers from a high failure rate, of which the exact pathophysiology is poorly understood. The use of a clinically relevant murine model provides us with a tool to unravel the pathophysiology and also to develop new therapeutic strategies that can improve the patency of the arteriovenous fistula in hemodialysis patients

    Type 2 diabetes monocyte microrna and mrna expression

    Get PDF
    There is increasing evidence that inflammatory macrophages in adipose tissue are involved in insulin resistance of type 2 diabetes (T2D). Due to a relative paucity of data on circulating monocytes in T2D, it is unclear whether the inflammatory changes of adipose tissue macrophages are reflected in these easily accessible cells. Objective To study the expression pattern of microRNAs and mRNAs related to inflammation in T2D monocytes. Design A microRNA finding study on monocytes of T2D patients and controls using array profiling was followed by a quantitative Real Time PCR (qPCR) study on monocytes of an Ecuadorian validation cohort testing the top over/under-expressed microRNAs. In addition, monocytes of the validation cohort were tested for 24 inflammation-related mRNAs and 2 microRNAs previously found deregulated in (auto)-inflammatory monocytes. Results In the finding study, 142 significantly differentially expressed microRNAs were identified, 15 having the strongest power to discriminate T2D patients from controls (sensitivity 66%, specificity 90%). However, differences in expression of these microRNAs between patients and controls were small. On the basis of >1.4 or <0.6-fold change expression 5 microRNAs were selected for further validation. One microRNA (miR-34c-5p) was validated as significantly over-expressed in T2D monocytes. In addition, we found over expression of 3 mRNAs (CD9, DHRS3 and PTPN7) in the validation cohort. These mRNAs are important for cell morphology, adhesion, shape change, and cell differentiation. Classical inflammatory genes (e.g. TNFAIP3) were only over-expressed in monocytes of patients with normal serum lipids. Remarkably, in dyslipidemia, there was a reduction in the expression of inflammatory genes (e.g. ATF3, DUSP2 and PTGS2). Conclusions The expression profile of microRNAs/mRNAs in monocytes of T2D patients indicates an altered adhesion, differentiation, and shape change potential. Monocyte inflammatory activation was only found in patients with normal serum lipids. Abnormal lipid values coincided with a reduced monocyte inflammatory state. Copyright

    Quaking promotes monocyte differentiation into pro-atherogenic macrophages by controlling pre-mRNA splicing and gene expression

    Get PDF
    A hallmark of inflammatory diseases is the excessive recruitment and influx of monocytes to sites of tissue damage and their ensuing differentiation into macrophages. Numerous stimuli are known to induce transcriptional changes associated with macrophage phenotype, but posttranscriptional control of human macrophage differentiation is less well understood. Here we show that expression levels of the RNA-binding protein Quaking (QKI) are low in monocytes and early human atherosclerotic lesions, but are abundant in macrophages of advanced plaques. Depletion of QKI protein impairs monocyte adhesion, migration, differentiation into macrophages and foam cell formation in vitro and in vivo. RNA-seq and microarray analysis of human monocyte and macrophage transcriptomes, including those of a unique QKI haploinsufficient patient, reveal striking changes in QKI-dependent messenger RNA levels and splicing of RNA transcripts. The biological importance of these transcripts and requirement for QKI during differentiation illustrates a central role for QKI in posttranscriptionally guiding macrophage identity and function.No sponso

    Increased platelet reactivity is associated with circulating platelet-monocyte complexes and macrophages in human atherosclerotic plaques

    Get PDF
    Objective: Platelet reactivity, platelet binding to monocytes and monocyte infiltration play a detrimental role in atherosclerotic plaque progression. We investigated whether platelet reactivity was associated with levels of circulating platelet-monocyte complexes (PMCs) and macrophages in human atherosclerotic carotid plaques. Methods: Platelet reactivity was determined by measuring platelet P-selectin expression after platelet stimulation with increasing concentrations of adenosine diphosphate (ADP), in two independent cohorts: the Circulating Cells cohort (n = 244) and the Athero-Express cohort (n = 91). Levels of PMCs were assessed by flow cytometry in blood samples of patients who were scheduled for percutaneous coronary intervention (Circulating Cells cohort). Monocyte infiltration was semi-quantitatively determined by histological examination of atherosclerotic carotid plaques collected during carotid endarterectomy (Athero-Express cohort). Results: We found increased platelet reactivity in patients with high PMCs as compared to patients with low PMCs (median (interquartile range): 4153 (1585-11267) area under the curve (AUC) vs. 9633 (3580-21565) AUC, P<0.001). Also, we observed increased pl

    Coupling eNOS Uncoupling to the Innate Immune Response

    No full text

    Activation of human factor V by Meizothrombin

    Get PDF
    A recombinant human prothrombin was prepared in which Arg155 was replaced by Ala. The recombinant prothrombin was converted into a meizothrombin derivative (R155A meizothrombin) that was resistant to autocatalytic removal of the fragment 1 domain. R155A meizothrombin appeared to be a potent factor V activator in reaction mixtures that contained negatively charged phospholipid vesicles. Factor V activation by R155A meizothrombin was characterized by second-order rate constants of 0.06 x 10(6) M-1 S-1 in the absence of phospholipid and 18 x 10(6) M-1 S-1 in the presence of 60 microM phospholipid vesicles composed of a 10:90 mol/mol mixture of phosphatidylserine (PS) and phosphatidylcholine (PC). The rate constant for thrombin-catalyzed activation of factor V was hardly affected by the presence of phospholipid vesicles and was 4.0 x 10(6) M-1 S-1. The initial rate of activation of 3 nM factor V by R155A meizothrombin was a function of the concentration of PS/PC vesicles present in the reaction mixture, and the calculated rate constant reached a plateau value at > or = 50 microM PS/PC. Gel electrophoretic analysis of factor V activation showed that R155A meizothrombin and thrombin cleaved the susceptible peptide bonds in factor V at different rates. However, both activators finally generated a factor Va molecule composed of a heavy chain with an M(r) of 104,000 and a light chain doublet with M(r) values of 74,000 and 71,000. Since meizothrombin is one of the major reaction products formed during the initial phase of prothrombin activation, these findings are indicative of a significant contribution of meizothrombin to in vivo factor V activatio
    • …
    corecore