118 research outputs found
Acute effects of adaptive Deep Brain Stimulation in Parkinson's disease
Background: Beta-based adaptive Deep Brain Stimulation (aDBS) is effective in Parkinson's disease (PD), when assessed in the immediate post-implantation phase. However, the potential benefits of aDBS in patients with electrodes chronically implanted, in whom changes due to the microlesion effect have disappeared, are yet to be assessed. Methods: To determine the acute effectiveness and side-effect profile of aDBS in PD compared to conventional continuous DBS (cDBS) and no stimulation (NoStim), years after DBS implantation, 13 PD patients undergoing battery replacement were pseudo-randomised in a crossover fashion, into three conditions (NoStim, aDBS or cDBS), with a 2-min interval between them. Patient videos were blindly evaluated using a short version of the Unified Parkinson's Disease Rating Scale (subUPDRS), and the Speech Intelligibility Test (SIT). Results: Mean disease duration was 16 years, and the mean time since DBS-implantation was 6.9 years. subUPDRS scores (11 patients tested) were significantly lower both in aDBS (p=<.001), and cDBS (p = .001), when compared to NoStim. Bradykinesia subscores were significantly lower in aDBS (p = .002), and did not achieve significance during cDBS (p = .08), when compared to NoStim. Two patients demonstrated re-emerging tremor during aDBS. SIT scores of patients who presented stimulation-induced dysarthria significantly worsened in cDBS (p = .009), but not in aDBS (p = .407), when compared to NoStim. Overall, stimulation was applied 48.8% of the time during aDBS. Conclusion: Beta-based aDBS is effective in PD patients with bradykinetic phenotypes, delivers less stimulation than cDBS, and potentially has a more favourable speech side-effect profile. Patients with prominent tremor may require a modified adaptive strategy
Functional Analysis of Aquaporin-1 Deficient Red Cells: THE COLTON-NULL PHENOTYPE
The aquaporin-1 (AQP1) water transport protein contains a polymorphism corresponding to the Colton red blood cell antigens. To define the fraction of membrane water permeability mediated by AQP1, red cells were obtained from human kindreds with the rare Colton-null phenotype. Homozygosity or heterozygosity for deletion of exon I in AQP1 correlated with total or partial deficiency of AQP1 protein. Homozygote red cell morphology appeared normal, but clinical laboratory studies revealed slightly reduced red cell life span in vivo; deformability studies revealed a slight reduction in membrane surface area. Diffusional water permeability (Pd) was measured under isotonic conditions by pulsed field gradient NMR. Osmotic water permeability (Pf) was measured by change in light scattering after rapid exposure of red cells to increased extracellular osmolality. AQP1 contributes approximately 64% (Pd = 1.5 x 10(-3) cm/s) of the total diffusional water permeability pathway, and lipid permeation apparently comprises approximately 23%. In contrast, AQP1 contributes > 85% (Pf = 19 x 10(-3) cm/s) of the total osmotic water permeability pathway, and lipid permeation apparently comprises only approximately 10%. The ratio of AQP1-mediated Pf to Pd predicts the length of the aqueous pore to be 36 A
Label-free detection of DNA hybridization based on hydration-induced tension in nucleic acid films
The properties of water at the nanoscale are crucial in many areas of biology, but the confinement of water molecules in sub-nanometre channels in biological systems has received relatively little attention. Advances in nanotechnology make it possible to explore the role played by water molecules in living systems, potentially leading to the development of ultrasensitive biosensors. Here we show that the adsorption of water by a self-assembled monolayer of single-stranded DNA on a silicon microcantilever can be detected by measuring how the tension in the monolayer changes as a result of hydration. Our approach relies on the microcantilever bending by an amount that depends on the tension in the monolayer. In particular, we find that the tension changes dramatically when the monolayer interacts with either complementary or single mismatched single-stranded DNA targets. Our results suggest that the tension is mainly governed by hydration forces in the channels between the DNA molecules and could lead to the development of a label-free DNA biosensor that can detect single mutations. The technique provides sensitivity in the femtomolar range that is at least two orders of magnitude better than that obtained previously with label-free nanomechanical biosensors and with label-dependent microarrays.D.R. acknowledges the fellowship funded by the Autonomic Community of Madrid (CAM). J.T, M.C, J.M and D.R acknowledge financial support by Spanish Ministry of Science (MEC) under grant No. TEC2006-10316 and CAM under grant No. 200550M056. C.B. acknowledges funding provided by MEC under grant No. BIO2007-67523. Work at Centro de Astrobiología was supported by European Union (EU), Instituto Nacional de Técnica Aeroespacial (INTA), MEC and CAM. All the authors acknowledge A. Cebollada, J.M. García-Martín, J. García, J.L. Costa-Kramer, M. Arroyo-Hernández and J.V. Anguita for their assistance in the gold deposition on the cantilevers.Peer reviewe
Increased cerebral blood volume in small arterial vessels is a correlate of amyloid-β-related cognitive decline
The protracted accumulation of amyloid-β (Aβ) is a major pathologic hallmark of Alzheimer's disease and may trigger secondary pathological processes that include neurovascular damage. This study was aimed at investigating long-term effects of Aβ burden on cerebral blood volume of arterioles and pial arteries (CBVa), possibly present before manifestation of dementia. Aβ burden was assessed by 11C Pittsburgh compound-B positron emission tomography in 22 controls and 18 persons with mild cognitive impairment (MCI), [ages: 75(±6) years]. After 2 years, inflow-based vascular space occupancy at ultra-high field strength of 7-Tesla was administered for measuring CBVa, and neuropsychological testing for cognitive decline. Crushing gradients were incorporated during MR-imaging to suppress signals from fast-flowing blood in large arteries, and thereby sensitize inflow-based vascular space occupancy to CBVa in pial arteries and arterioles. CBVa was significantly elevated in MCI compared to cognitively normal controls and regional CBVa related to local Aβ deposition. For both MCI and controls, Aβ burden and follow-up CBVa in several brain regions synergistically predicted cognitive decline over 2 years. Orbitofrontal CBVa was positively associated with apolipoprotein E e4 carrier status. Increased CBVa may reflect long-term effects of region-specific pathology associated with Aβ deposition. Additional studies are needed to clarify the role of the arteriolar system and the potential of CBVa as a biomarker for Aβ-related vascular downstream pathology
Factors Associated with Revision Surgery after Internal Fixation of Hip Fractures
Background: Femoral neck fractures are associated with high rates of revision surgery after management with internal fixation. Using data from the Fixation using Alternative Implants for the Treatment of Hip fractures (FAITH) trial evaluating methods of internal fixation in patients with femoral neck fractures, we investigated associations between baseline and surgical factors and the need for revision surgery to promote healing, relieve pain, treat infection or improve function over 24 months postsurgery. Additionally, we investigated factors associated with (1) hardware removal and (2) implant exchange from cancellous screws (CS) or sliding hip screw (SHS) to total hip arthroplasty, hemiarthroplasty, or another internal fixation device. Methods: We identified 15 potential factors a priori that may be associated with revision surgery, 7 with hardware removal, and 14 with implant exchange. We used multivariable Cox proportional hazards analyses in our investigation. Results: Factors associated with increased risk of revision surgery included: female sex, [hazard ratio (HR) 1.79, 95% confidence interval (CI) 1.25-2.50; P = 0.001], higher body mass index (fo
Imaging of sugar-based contrast agents using their hydroxyl proton exchange properties
The ability of CEST MRI to detect the presence of millimolar concentrations of non-metallic contrast agents has made it possible to study, noninvasively, important biological molecules such as proteins and sugars, as well as drugs already approved for clinical use. Here, we review efforts to use sugar and sugar polymers as exogenous contrast agents, which is possible based on the exchange of their hydroxyl protons with water protons. While this capability has raised early enthusiasm, for instance about the possibility to image D-glucose metabolism with MRI in a way analogous to PET, experience over the past decade has shown that this is not trivial. On the other hand, many studies have confirmed the possibility to image a large variety of sugar analogues, each with potentially interesting applications to assess tissue physiology. Some promising applications are the study of (i) sugar delivery and transport to assess blood brain barrier integrity, (ii) sugar uptake by cells for their characterization (e.g. cancer vs healthy), as well as (iii) clearance of sugars to assess tissue drainage for instance through the glymphatic system. To judge these opportunities and their challenges, especially in the clinic, it is needed to understand the technical aspects of detecting the presence of rapidly exchanging protons through the water signal in MRI, especially as a function of magnetic field strength. We expect that novel approaches in terms of MRI detection (both saturation transfer and relaxation based), MRI data analysis, and sugar design will push this young field forward in the next decade
- …