12 research outputs found
In Situ Label-Free Study of Protein Adsorption on Nanoparticles
[Image: see text] Improving the design of nanoparticles for use as drug carriers or biosensors requires a better understanding of the protein–nanoparticle interaction. Here, we present a new tool to investigate this interaction in situ and without additional labeling of the proteins and/or nanoparticles. By combining nonresonant second-harmonic light scattering with a modified Langmuir model, we show that it is possible to gain insight into the adsorption behavior of blood proteins, namely fibrinogen, human serum albumin, and transferrin, onto negatively charged polystyrene nanoparticles. The modified Langmuir model gives us access to the maximum amount of adsorbed protein, the apparent binding constant, and Gibbs free energy. Furthermore, we employ the method to investigate the influence of the nanoparticle size on the adsorption of human serum albumin and find that the amount of adsorbed protein increases more than the surface area per nanoparticle for larger diameters
Surface-Specific Spectroscopy of Water at a Potentiostatically Controlled Supported Graphene Monolayer
Knowledge of the structure of interfacial water molecules at electrified solid materials is the first step toward a better understanding of important processes at such surfaces, in, e.g., electrochemistry, atmospheric chemistry, and membrane biophysics. As graphene is an interesting material with multiple potential applications such as in transistors or sensors, we specifically investigate the graphene-water interface. We use sum-frequency generation spectroscopy to investigate the pH- and potential-dependence of the interfacial water structure in contact with a chemical vapor deposited (CVD) grown graphene surface. Our results show that the SFG signal from the interfacial water molecules at the graphene layer is dominated by the underlying substrate and that there are water molecules between the graphene and the (hydrophilic) supporting substrate
Experimental and theoretical evidence for bilayer-by-bilayer surface melting of crystalline ice
On the surface of water ice, a quasi-liquid layer (QLL) has been extensively reported at temperatures below its bulk melting point at 273 K. Approaching the bulk melting temperature from below, the thickness of the QLL is known to increase. To elucidate the precise temperature variation of the QLL, and its nature, we investigate the surface melting of hexagonal ice by combining noncontact, surface-specific vibrational sum frequency generation (SFG) spectroscopy and spectra calculated from molecular dynamics simulations. Using SFG, we probe the outermost water layers of distinct single crystalline ice faces at different temperatures. For the basal face, a stepwise, sudden weakening of the hydrogen-bonded structure of the outermost water layers occurs at 257 K. The spectral calculations from the molecular dynamics simulations reproduce the experimental findings; this allows us to interpret our experimental findings in terms of a stepwise change from one to two molten bilayers at the transition temperature