108 research outputs found

    Ultrafast Protein Dynamics Revealed by Infrared Spectroscopy

    Get PDF
    Grondelle, R. [Promotor]van Groot, M.L. [Promotor

    Cyano-tryptophans as dual infrared and fluorescence spectroscopic labels to assess structural dynamics in proteins

    Get PDF
    The steady state and time-resolved fluorescence and infrared (IR) properties of 4- and 5-cyanotryptophan (CNTrp) are investigated and compared, and the tryptophan (Trp) analogs are found to be very attractive to study structural and dynamic properties of proteins. The position of the nitrile substitution as well as the solvent environment influences the spectroscopic properties (solvatochromism). Similar to native Trp, electronic (nanosecond) lifetime and emission spectra are modulated by the environment, making CNTrps attractive fluorescent probes to study the structural dynamics of proteins in complex media. The nitrile absorption in the IR region can provide local structural information as it responds sensitively to changes in electrostatics and hydrogen bond (HB) interactions. Importantly, we find that 4CNTrp exhibits a single absorption in the nitrile stretch region, while the model compound 4CN-indole (4CNI) shows two. Even though the spectrum of the model compound is perturbed by a Fermi resonance, we find that 4CNTrp itself is a useful IR label. Moreover, if the nitrile group is substituted at the 5 position, the Trp analog predominantly reports on its HB status. Because the current literature on similar compounds is too limited for a detailed solvatochromic analysis, we extend the available data significantly. Only now are microscopic details such as the mentioned sensitivity to electrostatics coming to light. The vibrational lifetime of the CN moiety (acting on a picosecond time scale in contrast to the nanosecond time scale for fluorescent emission) allows for its application in 2D-IR spectroscopy in the low picosecond range. Taken together, the benefits of CNTrps are that they absorb and emit separately from the naturally occurring Trp and that in these dual fluorescence/vibrational labels, observables of IR and fluorescence spectroscopy are modulated differently by their surroundings. Because IR absorption and fluorescence operate on different time and length scales, they thus provide complementary structural information.</p

    Vibrationally resolved two-photon electronic spectra including vibrational pre-excitation:Theory and application to VIPER spectroscopy with two-photon excitation

    Get PDF
    Following up on our previous work on vibrationally resolved electronic absorption spectra including the effect of vibrational pre-excitation [J. von Cosel et al., J. Chem. Phys. 147, 164116 (2017)], we present a combined theoretical and experimental study of two-photon induced vibronic transitions in polyatomic molecules that are probed in the Vibrationally Promoted Electronic Resonance experiment using two-photon excitation (2P-VIPER). In order to compute vibronic spectra, we employ time-independent and time-dependent methods based on the evaluation of Franck-Condon overlap integrals and Fourier transformation of time-domain correlation functions, respectively. The time-independent approach uses a generalized version of the FCclasses method, while the time-dependent approach relies on the analytical evaluation of Gaussian moments within the harmonic approximation including Duschinsky rotation effects. For the Coumarin 6 dye, two-dimensional 2P-VIPER experiments involving excitation to the lowest-lying singlet excited state S1 are presented and compared with corresponding one-photon (1P)-VIPER spectra. In both cases, coumarin ring modes and a CO stretch mode show VIPER activity, albeit with different relative intensities. Selective pre-excitation of these modes leads to a pronounced redshift of the low-frequency edge of the electronic absorption spectrum, which is a prerequisite for the VIPER experiment. Theoretical analysis underscores the role of interference between Franck-Condon and Herzberg-Teller effects in the two-photon experiment, which is at the root of the observed intensity distribution

    Kinetic studies on the oxidation of semiquinone and hydroquinone forms of Arabidopsis cryptochrome by molecular oxygen

    Get PDF
    Cryptochromes (crys) are flavoprotein photoreceptors present throughout the biological kingdom that play important roles in plant development and entrainment of the circadian clock in several organisms. Crys non-covalently bind flavin adenine dinucleotide (FAD) which undergoes photoreduction from the oxidised state to a radical form suggested to be active in signalling in vivo. Although the photoreduction reactions have been well characterised by a number of approaches, little is known of the oxidation reactions of crys and their mechanisms. In this work, a stopped-flow kinetics approach is used to investigate the mechanism of cry oxidation in the presence and absence of an external electron donor. This in vitro study extends earlier investigations of the oxidation of Arabidopsis cryptochrome1 by molecular oxygen and demonstrates that, under some conditions, a more complex model for oxidation of the flavin than was previously proposed is required to accommodate the spectral evidence. In the absence of an electron donor, photoreduction leads predominantly to the formation of the radical FADHradical dot. Dark recovery most likely forms flavin hydroperoxide (FADHOOH) requiring superoxide. In the presence of reductant (DTT), illumination yields the fully reduced flavin species (FADH?). Reaction of this with dioxygen leads to transient radical (FADHradical dot) and simultaneous accumulation of oxidised species (FAD), possibly governed by interplay between different cryptochrome molecules or cooperativity effects within the cry homodimer

    Ultrafast mid-infrared spectroscopy by chirped pulse upconversion in 1800-1000cm(-1) region

    Get PDF
    Broadband femtosecond mid-infrared pulses can be converted into the visible spectral region by chirped pulse upconversion. We report here the upconversion of pump probe transient signals in the frequency region below 1800c

    On the involvement of Single-Bond Rotation in the Primary Photochemistry of Photoactive Yellow Protein

    Get PDF
    AbstractPrior experimental observations, as well as theoretical considerations, have led to the proposal that C4-C7 single-bond rotation may play an important role in the primary photochemistry of photoactive yellow protein (PYP). We therefore synthesized an analog of this protein's 4-hydroxy-cinnamic acid chromophore, (5-hydroxy indan-(1E)-ylidene)acetic acid, in which rotation across the C4-C7 single bond has been locked with an ethane bridge, and we reconstituted the apo form of the wild-type protein and its R52A derivative with this chromophore analog. In PYP reconstituted with the rotation-locked chromophore, 1), absorption spectra of ground and intermediate states are slightly blue-shifted; 2), the quantum yield of photochemistry is ∼60% reduced; 3), the excited-state dynamics of the chromophore are accelerated; and 4), dynamics of the thermal recovery reaction of the protein are accelerated. A significant finding was that the yield of the transient ground-state intermediate in the early phase of the photocycle was considerably higher in the rotation-locked samples than in the corresponding samples reconstituted with p-coumaric acid. In contrast to theoretical predictions, the initial photocycle dynamics of PYP were observed to be not affected by the charge of the amino acid residue at position 52, which was varied by 1), varying the pH of the sample between 5 and 10; and 2), site-directed mutagenesis to construct R52A. These results imply that C4-C7 single-bond rotation in PYP is not an alternative to C7=C8 double-bond rotation, in case the nearby positive charge of R52 is absent, but rather facilitates, presumably with a compensatory movement, the physiological Z/E isomerization of the blue-light-absorbing chromophore

    Pyrosequencing of Bacterial Symbionts within Axinella corrugata Sponges: Diversity and Seasonal Variability

    Get PDF
    Background: Marine sponge species are of significant interest to many scientific fields including marine ecology, conservation biology, genetics, host-microbe symbiosis and pharmacology. One of the most intriguing aspects of the sponge ‘‘holobiont’’ system is the unique physiology, interaction with microbes from the marine environment and the development of a complex commensal microbial community. However, intraspecific variability and temporal stability of sponge-associated bacterial symbionts remain relatively unknown. Methodology/Principal Findings: We have characterized the bacterial symbiont community biodiversity of seven different individuals of the Caribbean reef sponge Axinella corrugata, from two different Florida reef locations during variable seasons using multiplex 454 pyrosequencing of 16 S rRNA amplicons. Over 265,512 high-quality 16 S rRNA sequences were generated and analyzed. Utilizing versatile bioinformatics methods and analytical software such as the QIIME and CloVR packages, we have identified 9,444 distinct bacterial operational taxonomic units (OTUs). Approximately 65,550 rRNA sequences (24%) could not be matched to bacteria at the class level, and may therefore represent novel taxa. Differentially abundant classes between seasonal Axinella communities included Gammaproteobacteria, Flavobacteria, Alphaproteobacteria, Cyanobacteria, Acidobacter and Nitrospira. Comparisons with a proximal outgroup sponge species (Amphimedon compressa), and the growing sponge symbiont literature, indicate that this study has identified approximately 330 A. corrugata-specific symbiotic OTUs, many of which are related to the sulfur-oxidizing Ectothiorhodospiraceae. This family appeared exclusively within A. corrugata, comprising \u3e34.5% of all sequenced amplicons. Other A. corrugata symbionts such as Deltaproteobacteria, Bdellovibrio, and Thiocystis among many others are described. Conclusions/Significance: Slight shifts in several bacterial taxa were observed between communities sampled during spring and fall seasons. New 16 S rDNA sequences and concomitant identifications greatly expand the microbial community profile for this model reef sponge, and will likely be useful as a baseline for any future comparisons regarding sponge microbial community dynamics
    • …
    corecore