7 research outputs found

    Left ventricular function and exercise capacity after arterial switch operation for transposition of the great arteries : a systematic review and meta-analysis

    No full text
    BACKGROUND: The arterial switch operation for transposition of the great arteries was initially believed to be an anatomical correction. Recent evidence shows reduced exercise capacity and left ventricular function in varying degrees in the long term after an arterial switch operation. OBJECTIVE: To perform a meta-analysis on long-term exercise capacity and left ventricular ejection fraction after an arterial switch operation. METHODS: A literature search was performed to cover all studies on patients who had undergone a minimum of 6 years of follow-up that reported either left ventricular ejection fraction, peak oxygen uptake, peak workload, and/or peak heart rate. A meta-analysis was performed if more than three studies reported the outcome of interest. RESULTS: A total of 21 studies reported on the outcomes of interest. Oxygen uptake was consistently lower in patients who had undergone an arterial switch operation compared with healthy controls, with a pooled average peak oxygen uptake of 87.5±2.9% of predicted. The peak heart rate was also lower compared with that of controls, at 92±2% of predicted. Peak workload was significantly reduced in two studies. Pooled left ventricular ejection fraction was normal at 60.7±7.2%. CONCLUSION: Exercise capacity is reduced and left ventricular ejection fraction is preserved in the long term after an arterial switch operation for transposition of the great arteries

    Main pulmonary artery area limits exercise capacity in patients long-term after arterial switch operation

    No full text
    OBJECTIVES: Despite excellent survival in patients after the arterial switch operation, reintervention is frequently required and exercise capacity is decreased in a substantial number of patients. This study relates right-sided imaging features in patients long-term after the arterial switch operation to exercise capacity and ventilatory efficiency to investigate which lesions are functionally important. METHODS: Patients operated in the UMC Utrecht, the Netherlands (1976-2001) and healthy controls underwent cardiac magnetic resonance imaging and cardiopulmonary exercise testing within 1 week. We measured main, left, and right pulmonary artery cross-sectional areas, pulmonary blood flow distribution, peak oxygen uptake, and minute ventilation relative to carbon dioxide elimination. RESULTS: A total of 71 patients (median age, 20 [12-35] years, 73% were male) and 21 healthy controls (median age, 26 [21-35] years, 48% were male) were included. Main, left, and right pulmonary artery areas were decreased compared with controls (190 vs 269 mm(2)/m(2), 59 vs 157 mm(2)/m(2), 98 vs 139 mm(2)/m(2), respectively, all P 25 years) showed that the main pulmonary artery area was smaller in older age groups. In multivariable analysis, the main pulmonary artery area was independently associated with peak oxygen uptake (P = .032). CONCLUSIONS: In adult patients after the arterial switch operation, narrowing of the main pulmonary artery is a common finding and is the main determinant of limitation in functional capacity, rather than pulmonary branch stenosis

    Interfering with UDP-GlcNAc Metabolism and Heparan Sulfate Expression Using a Sugar Analogue Reduces Angiogenesis

    No full text
    Heparan sulfate (HS), a long linear polysaccharide, is implicated in various steps of tumorigenesis, including angiogenesis. We successfully interfered with HS biosynthesis using a peracetylated 4-deoxy analogue of the HS constituent GlcNAc and studied the compound’s metabolic fate and its effect on angiogenesis. The 4-deoxy analogue was activated intracellularly into UDP-4-deoxy-GlcNAc, and HS expression was inhibited up to ∼96% (IC<sub>50</sub> = 16 μM). HS chain size was reduced, without detectable incorporation of the 4-deoxy analogue, likely due to reduced levels of UDP-GlcNAc and/or inhibition of glycosyltransferase activity. Comprehensive gene expression analysis revealed reduced expression of genes regulated by HS binding growth factors such as FGF-2 and VEGF. Cellular binding and signaling of these angiogenic factors was inhibited. Microinjection in zebrafish embryos strongly reduced HS biosynthesis, and angiogenesis was inhibited in both zebrafish and chicken model systems. All of these data identify 4-deoxy-GlcNAc as a potent inhibitor of HS synthesis, which hampers pro-angiogenic signaling and neo-vessel formation

    Ventilation management and clinical outcomes in invasively ventilated patients with COVID-19 (PRoVENT-COVID): a national, multicentre, observational cohort study

    No full text
    Background: Little is known about the practice of ventilation management in patients with COVID-19. We aimed to describe the practice of ventilation management and to establish outcomes in invasively ventilated patients with COVID-19 in a single country during the first month of the outbreak. Methods: PRoVENT-COVID is a national, multicentre, retrospective observational study done at 18 intensive care units (ICUs) in the Netherlands. Consecutive patients aged at least 18 years were eligible for participation if they had received invasive ventilation for COVID-19 at a participating ICU during the first month of the national outbreak in the Netherlands. The primary outcome was a combination of ventilator variables and parameters over the first 4 calendar days of ventilation: tidal volume, positive end-expiratory pressure (PEEP), respiratory system compliance, and driving pressure. Secondary outcomes included the use of adjunctive treatments for refractory hypoxaemia and ICU complications. Patient-centred outcomes were ventilator-free days at day 28, duration of ventilation, duration of ICU and hospital stay, and mortality. PRoVENT-COVID is registered at ClinicalTrials.gov (NCT04346342). Findings: Between March 1 and April 1, 2020, 553 patients were included in the study. Median tidal volume was 6·3 mL/kg predicted bodyweight (IQR 5·7–7·1), PEEP was 14·0 cm H2O (IQR 11·0–15·0), and driving pressure was 14·0 cm H2O (11·2–16·0). Median respiratory system compliance was 31·9 mL/cm H2O (26·0–39·9). Of the adjunctive treatments for refractory hypoxaemia, prone positioning was most often used in the first 4 days of ventilation (283 [53%] of 530 patients). The median number of ventilator-free days at day 28 was 0 (IQR 0–15); 186 (35%) of 530 patients had died by day 28. Predictors of 28-day mortality were gender, age, tidal volume, respiratory system compliance, arterial pH, and heart rate on the first day of invasive ventilation. Interpretation: In patients with COVID-19 who were invasively ventilated during the first month of the outbreak in the Netherlands, lung-protective ventilation with low tidal volume and low driving pressure was broadly applied and prone positioning was often used. The applied PEEP varied widely, despite an invariably low respiratory system compliance. The findings of this national study provide a basis for new hypotheses and sample size calculations for future trials of invasive ventilation for COVID-19. These data could also help in the interpretation of findings from other studies of ventilation practice and outcomes in invasively ventilated patients with COVID-19. Funding: Amsterdam University Medical Centers, location Academic Medical Center

    Proceedings Of The 23Rd Paediatric Rheumatology European Society Congress: Part Two

    No full text
    PubMe
    corecore