18 research outputs found

    New paths for modelling freshwater nature futures

    Get PDF
    Freshwater ecosystems are exceptionally rich in biodiversity and provide essential benefits to people. Yet they are disproportionately threatened compared to terrestrial and marine systems and remain underrepresented in the scenarios and models used for global environmental assessments. The Nature Futures Framework (NFF) has recently been proposed to advance the contribution of scenarios and models for environmental assessments. This framework places the diverse relationships between people and nature at its core, identifying three value perspectives as points of departure: Nature for Nature, Nature for Society, and Nature as Culture. We explore how the NFF may be implemented for improved assessment of freshwater ecosystems. First, we outline how the NFF and its main value perspectives can be translated to freshwater systems and explore what desirable freshwater futures would look like from each of the above perspectives. Second, we review scenario strategies and current models to examine how freshwater modelling can be linked to the NFF in terms of its aims and outcomes. In doing so, we also identify which aspects of the NFF framework are not yet captured in current freshwater models and suggest possible ways to bridge them. Our analysis provides future directions for a more holistic freshwater model and scenario development and demonstrates how society can benefit from freshwater modelling efforts that are integrated with the value-perspectives of the NFF. Graphical abstract: [Figure not available: see fulltext.]</p

    A perspective on water quality in connected systems : modelling feedback between upstream and downstream transport and local ecological processes

    Get PDF
    Highlights ā€¢ Catchment pollution limits water-related ecosystem services such as food production. ā€¢ Water flow transports energy, substances and organisms downstream. ā€¢ Organism behaviour causes bidirectional transport across the catchment. ā€¢ Humans are modifiers of water and organismal transport. ā€¢ Coupled transport-ecosystem models are essential for water quality assessment.Food production for a growing world population relies on application of fertilisers and pesticides on agricultural lands. However, these substances threaten surface water quality and thereby endanger valued ecosystem services such as drinking water supply, food production and recreational water use. Such deleterious effects do not merely arise on the local scale, but also on the regional scale through transport of substances as well as energy and biota across the catchment. Here we argue that aquatic ecosystem models can provide a process-based understanding of how these transports by water and organisms as vectors affect ā€“ and are affected by ā€“ ecosystem state and functioning in networks of connected lakes. Such a catchment scale approach is key to setting critical limits for the release of substances by agricultural practices and other human pressures on aquatic ecosystems. Thereby, water and food production and the trade-offs between them may be managed more sustainably

    On High Tension Lines of Transformers for Power Transmission

    No full text
    ēخ刄:å’ę„­č«–ę–‡ę±äŗ¬åøå›½å¤§å­¦å·„ē§‘大

    Success of lake restoration depends on spatial aspects of nutrient loading and hydrology

    No full text
    Many aquatic ecosystems have deteriorated due to human activities and their restoration is often troublesome. It is proposed here that the restoration success of deteriorated lakes critically depends on hitherto largely neglected spatial heterogeneity in nutrient loading and hydrology. A modelling approach is used to study this hypothesis by considering four lake types with contrasting nutrient loading (point versus diffuse) and hydrology (seepage versus drainage). By comparing the longterm effect of common restoration measures (nutrient load reduction, lake flushing or biomanipulation) in these four lake types, we found that restoration through reduction of nutrient loading is effective in all cases. In contrast, biomanipulation only works in seepage lakes with diffuse nutrient inputs, while lake flushing will even be counterproductive in lakes with nutrient point sources. The main conclusion of the presented analysis is that a priori assessment of spatial heterogeneity caused by nutrient loading and hydrology is essential for successful restoration of lake ecosystems

    A generically parameterized model of Lake eutrophication : The impact of Stoichiometric ratios and constraints on the abundance of natural phytoplankton communities (GPLake-S)

    No full text
    Water quality improvement to avoid excessive phytoplankton blooms often requires eutrophication management where both phosphorus (P) and nitrogen (N) play a role. While empirical eutrophication studies and ecological resource competition theory both provide insight into phytoplankton abundance in response to nutrient loading, they are not seamlessly linked in the current state of eutrophication research. We argue that understanding species competition for multiple nutrients and light in natural phytoplankton communities is key to assessing phytoplankton abundance under changing nutrient supply. Here we present GPLake-S, a mechanistic model rooted in ecological resource competition theory, which has only eight parameters and can predict chlorophyll-a to nutrient relationships for phytoplankton communities under N, P, N+P colimitation and light limitation. GPLake-S offers a simple mechanistic tool to make first estimates of chlorophyll-a levels and nutrient thresholds for generic lake properties, accounting for variation in N:P ratio preferences of phytoplankton species. This makes the model supportive of water management and policy

    Smart Nutrient Retention Networks : a novel approach for nutrient conservation through water quality management

    No full text
    Nutrients are essential resources for food production but are used inefficiently, and thereby they pollute inland and coastal waters and are lost into the oceans. Nutrient conservation by retention and consecutive reuse would prevent nutrient losses to the atmosphere and downstream ecosystems. We present Smart Nutrient Retention Networks (SNRNs) as a novel management approach to achieve nutrient conservation across networks of connected waterbodies through strategic water quality management. To present the key features of SNRNs, we review existing knowledge of nutrient retention processes in inland waters, water quality management options for nutrient conservation, and nutrient retention models to develop SNRNs. We argue that successful nutrient conservation, even at a local level, through SNRN management strategies requires clearly formulated goals and catchment-wide system understanding. Waterbody characteristics, such as hydraulic residence time and the presence of macrophytes, shape local nutrient retention with potential network-wide cascading effects of improved water quality and are therefore key targets of SNRN management strategies. Nutrient retention models that include the self-reinforcing feedback loop of ecological water quality, nutrient retention, and nutrient loading in networks of inland waters in relation to management options can support the development of SNRNs. We conclude that SNRNs can contribute to sustainable use of nutrients in human food production.</p

    A Generically Parameterized model of Lake eutrophication (GPLake) that links field-, lab- and model-based knowledge

    No full text
    Worldwide, eutrophication is threatening lake ecosystems. To support lake management numerous eutrophication models have been developed. Diverse research questions in a wide range of lake ecosystems are addressed by these models. The established models are based on three key approaches: the empirical approach that employs field surveys, the theoretical approach in which models based on first principles are tested against lab experiments, and the process-based approach that uses parameters and functions representing detailed biogeochemical processes. These approaches have led to an accumulation of field-, lab- and model-based knowledge, respectively. Linking these sources of knowledge would benefit lake management by exploiting complementary information; however, the development of a simple tool that links these approaches was hampered by their large differences in scale and complexity. Here we propose a Generically Parameterized Lake eutrophication model (GPLake) that links field-, lab- and model-based knowledge and can be used to make a first diagnosis of lake water quality. We derived GPLake from consumer-resource theory by the principle that lacustrine phytoplankton is typically limited by two resources: nutrients and light. These limitations are captured in two generic parameters that shape the nutrient to chlorophyll-a relations. Next, we parameterized GPLake, using knowledge from empirical, theoretical, and process-based approaches. GPLake generic parameters were found to scale in a comparable manner across data sources. Finally, we show that GPLake can be applied as a simple tool that provides lake managers with a first diagnosis of the limiting factor and lake water quality, using only the parameters for lake depth, residence time and current nutrient loading. With this first-order assessment, lake managers can easily assess measures such as reducing nutrient load, decreasing residence time or changing depth before spending money on field-, lab- or model- experiments to support lake management.</p

    A generically parameterized model of Lake eutrophication: The impact of Stoichiometric ratios and constraints on the abundance of natural phytoplankton communities (GPLake-S)

    No full text
    Water quality improvement to avoid excessive phytoplankton blooms often requires eutrophication management where both phosphorus (P) and nitrogen (N) play a role. While empirical eutrophication studies and ecological resource competition theory both provide insight into phytoplankton abundance in response to nutrient loading, they are not seamlessly linked in the current state of eutrophication research. We argue that understanding species competition for multiple nutrients and light in natural phytoplankton communities is key to assessing phytoplankton abundance under changing nutrient supply. Here we present GPLake-S, a mechanistic model rooted in ecological resource competition theory, which has only eight parameters and can predict chlorophyll-a to nutrient relationships for phytoplankton communities under N, P, N+P colimitation and light limitation. GPLake-S offers a simple mechanistic tool to make first estimates of chlorophyll-a levels and nutrient thresholds for generic lake properties, accounting for variation in N:P ratio preferences of phytoplankton species. This makes the model supportive of water management and policy

    Modeling water quality in the Anthropocene: directions for the next-generation aquatic ecosystem models

    No full text
    Everything changes and nothing stands stillā€ (Heraclitus). Here we review three major improvements to freshwater aquatic ecosystem models ā€” and ecological models in general ā€” as water quality scenario analysis tools towards a sustainable future. To tackle the rapid and deeply connected dynamics characteristic of the Anthropocene, we argue for the inclusion of eco-evolutionary, novel ecosystem and social-ecological dynamics. These dynamics arise from adaptive responses in organisms and ecosystems to global environmental change and act at different integration levels and different time scales. We provide reasons and means to incorporate each improvement into aquatic ecosystem models. Throughout this study we refer to Lake Victoria as a microcosm of the evolving novel social-ecological systems of the Anthropocene. The Lake Victoria case clearly shows how interlinked eco-evolutionary, novel ecosystem and social-ecological dynamics are, and demonstrates the need for transdisciplinary research approaches towards global sustainability

    Towards a global model for wetlands ecosystem services

    No full text
    Wetlands play an important role in the provision of important ecosystem services like the provision of clean water to the world, adaptation to climate change, and support for biodiversity; although they are sometimes also associated with adverse climate effects. Wetlands are, however, currently grossly underrepresented in global environmental models. In this paper, we explore the required functionality of a generic model of the effects of climate and land-use changes on wetlands ecosystem services worldwide. We briefly review existing models to identify elements which can be combined to compile a generic wetland model. The proposed global wetland model should be integrated into and receive data from existing hydrology and climate models. Wetland delineation can be based on local hydrological and topographical conditions and verified with global wetland databases. We conclude that an integrated approach combining hydrology, biogeochemistry and vegetation for wetlands is not available yet, however, useful building blocks exist that can be combined
    corecore