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Food production for a growing world population relies on

application of fertilisers and pesticides on agricultural

lands. However, these substances threaten surface water

quality and thereby endanger valued ecosystem services

such as drinking water supply, food production and

recreational water use. Such deleterious effects do not

merely arise on the local scale, but also on the regional

scale through transport of substances as well as energy

and biota across the catchment. Here we argue that

aquatic ecosystem models can provide a process-based

understanding of how these transports by water and

organisms as vectors affect – and are affected by –

ecosystem state and functioning in networks of connected

lakes. Such a catchment scale approach is key to setting

critical limits for the release of substances by agricultural

practices and other human pressures on aquatic

ecosystems. Thereby, water and food production and the

trade-offs between them may be managed more

sustainably.
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Introduction
Food production for a growing world population relies on

application of fertilisers and pesticides on agricultural

lands [1]. However, these substances threaten surface

water quality and thereby endanger valued ecosystem

services such as food production, drinking water supply

and recreational water use. Insight in current and future

functioning of aquatic ecosystems at a local, regional and

global scale is therefore of high societal relevance [2]. The

focus of research on aquatic ecosystem functioning has

shifted over the years. The earliest scientific studies in

the field of aquatic ecology – such as the seminal work of

Forbes [3] – argued that organisms in lakes live in

remarkable isolation from the surrounding land. The

current scientific view, however, is that the ecological

functioning of lakes can only be understood if we take

their connectedness with the surrounding watershed and

the agricultural practices therein into account [4]. Obvi-

ously, the hydrological network supplies lakes with water

and nutrients, thereby determining its residence time and

trophic status [5�]. Less obvious – but potentially of

crucial importance – is that the local ecological state of

lakes feedback on other lakes in the network, with the

possibility for a domino effect in water quality along the

network [6��]. Here we argue that in addition to being

connected through water flow, aquatic ecosystems

exchange energy, substances and biota through
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22 System dynamics and sustainability
organismal behaviour. Both water flow and organismal

behaviour are vectors that are modified by human pres-

sures [7�]. Specifically, we establish how both vectors

influence mass transport processes at the catchment

and subcatchment scale between lake ecosystems. Fur-

thermore, we examine how such processes translate into

modelling a connected waterscape using aquatic ecosys-

tem models (AEMs). The latter is essential for the

identification and setting of catchment-wide pollution

limits for managers to ensure sound water quality while

maintaining human benefits of the landscape and water-

scape (e.g. food production, drinking water supply). Here

we choose to focus in on the spatial scale of the catchment

as it is the spatial scale where water management of local,

regional, and even continental institutions [8] and its

legislation [9] should be put into practice. Moreover, it

is a relatable and graspable spatial scale for stakeholders

[10] where their daily lives, regional food production and

land use takes place [11��].

Vectors of connectedness
Water flow and organism flow are two major vectors

determining the connectedness of lakes within

catchments, therewith accounting for the transport of

energy, substances and biota (Figure 1). The degree of

transport affects ecosystem state and functioning in

networks of connected lakes. We now will assess these

two major vectors in relation to transport of energy,

substances and biota.

Water flows: transport of energy
The speed of water flow has consequences for the trans-

port of both kinetic and thermal energy through the

catchment (Figure 1a), therewith selectively removing

specific groups of organisms from lakes and potentially

affecting ecological states. The speed of water flow affects

the kinetic energy which is especially relevant for uproot-

ing of macrophytes [12] or for flushing of phytoplankton

[13] and free-floating plants [14]. In contrast, organisms

may also mediate kinetic energy by obstructing the water

flow. For example, aquatic vegetation causes flow

impedance, leading to a reduction of potential washout

of aquatic organisms downstream [15]. Another form of

energy transport is found in the transport of thermal

energy. Inflow of water of a different temperature may

have far-reaching ecological effects due to the disruption

of natural stratification and ice cover regimes downstream

[16]. Stratification determines the redistribution of dis-

solved substances (nutrients, oxygen) [17], and therefore

has a decisive impact on the composition of the ecological

community in lake systems [18]. Water heat transfer is

strongly impacted by its clarity, which is largely driven by

the biomass accumulation of phytoplankton [19].

Through increasing human use of the cooling and heating

capacity of water, water systems are increasingly

thermally polluted and oxygen depleted [20], which
Current Opinion in Environmental Sustainability 2019, 40:21–29 
has the potential to make ecologically relevant changes

[21] to downstream lakes.

Water flows: transport of substances
Water flows are a key vector for the transport of a whole

range of dissolved and suspended substances (Figure 1b).

Most relevant in an ecological context are nutrients

(primarily phosphorus and nitrogen) and pollutants

(e.g. pesticides, heavy metals, pharmaceuticals and

microplastics) and sediments [22–24]. Influx of these

substances to lakes impact local ecosystem dynamics

(i.e. biomass build-ups, toxic effects) and are included

in several AEMs (e.g. [25,26�]). When these substances

are transported by the water flow downstream the catch-

ment, they can also impact connected lake systems in

turn. Some inert substances – such as chloride – are likely

to reach downstream systems via relative simple path-

ways, being a product of the inflowing load and

the dilution by the water flows throughout the network

(i.e. mass balance calculations) [27]. Non-inert particle

transport becomes more complex, as the simple dilution

function no longer holds once ecological feedback impact

the adhesion, diffusion, uptake or release of substances

[28]. For example, nutrients undergo such an ecological

feedback, as all biotic groups actively use them in

different amounts for biochemical processes, thereby

indirectly impacting nutrient retention of lakes. Hence,

if an increase or decrease of nutrient input modifies an

upstream ecological state (e.g. from macrophyte to phy-

toplankton domination) the nutrient retention capacity of

a system will change due to a changed ecological

configuration (e.g. [29�,30]). When lakes are connected,

this will, in turn, affect nutrient flows between lakes and

can trigger a domino effect of changes in ecological states

[6��]. Similar principles may hold for other pollutants, as

they are known to trigger state changes [31] and the

resulting changed ecological configuration may also lead

to notably different retention, uptake and adsorption

rates, and even impact the half-life of various substances

and their bioaccumulation rate [32]. Lakes, and reservoirs

especially, may serve as basins of selective retention

within the hydrological network due to their (relatively)

long water residence times [33], but depending on

physiochemical and ecological conditions they may also

selectively release substances [34].

Water flows: unidirectional transport of biota
Similar to the transport of substances, organisms may be

transported along with the water flow. This transport of

planktonic organisms can cause changes in an ecosystem

state when: (a) the inflow of organisms is sufficiently great

to displace local communities (mass effect, Leibold

2004), or (b) the organism entering the system is

competitively superior (invasion). With mass effects,

the inflow of organisms essentially overwhelms the local

community, thereby changing ecological configurations

directly [87,88]. Invasive species are clear examples of
www.sciencedirect.com
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Figure 1
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Schematic figure illustrating different cases of connectedness of aquatic systems through flows of water and organisms, including examples of the

associated ecological effects (italic): (a) the transport of energy through water flow may impact adjacent aquatic systems by transport of thermal

energy that impacts stratification regimes and kinetic energy able to cause uprooting of vegetation; (b) transport of substances and planktonic

organisms by water flow may cause eutrophication and mass effects or invasions of organisms from the upstream system; (c) actively moving

organisms (e.g. fish, birds) or overland dispersal through wind can transport organisms (e.g. free floating plants and plant propagules) and

nutrients against the dominant flow direction and even to hydrologically unconnected systems.
competitively dominant groups of organisms that even in

small numbers – may become dominant in a system [35].

For example, invasion by a diatom algal species (didymo)

in New Zealand has had massive impact on the ecological

state of lake systems by changing them into
www.sciencedirect.com 
phytoplankton dominated systems [36�]. Likewise,

ecosystem engineers that modify their existing habitat

(e.g. Dreissenid mussels) cause strongly different

ecological configurations [37] and become dominant,

whilst only arriving in small numbers. When species
Current Opinion in Environmental Sustainability 2019, 40:21–29
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coming in via water flow are not directly invasive, their

numbers are often very small compared to the already

present population densities. Inflow of (non-invasive)

organisms from upstream sources will become the domi-

nant process determining the state of a lake ecosystem at

short residence times (less than a few days) [38]. When

residence times become longer, the internal processes of

the system will become increasingly important for the

ecological outcome in relation to the transport flux [39].

Organisms flows: bi-directional movement
Organism flows can also be bi-directional, allowing organ-

isms to move from downstream to upstream locations and

transporting both themselves as well as substances

[40,41]. Some aquatic organisms are capable of moving

against water flow (i.e. fish), whilst other partially aquatic

organisms (e.g. amphibians, insects, birds and crayfish)

may move and disperse overland by active motion. Lastly,

wind may transport propagule or floating sessile organ-

isms (i.e. free floating plants, algal scums [42]) against the

flow. Active movement of organisms is inherently behav-

iour driven, and may take place at levels of spatial scale far

greater than the local ecosystem [43,44]. While

only selected groups of organisms are capable of such

bi-directional transport, there is ample evidence for the

importance of this in cross-ecosystem nutrient transport

[45]. The substance transport by organism movement will

largely consist of the nutrients that form the building

blocks of their biomass, though fish as well as birds are

also known to transport seeds, propagules and pathogens

of other organisms upstream [46,47]. Meanwhile these

organisms can have key impact on the local ecosystems

where they are located, for example, fish [48]. This bi-

directional movement is ecologically relevant when it

either constitutes a large flow of mass of organisms (mass

effect) or a large amount of substances causing upstream

enrichment. The relative magnitude in terms of biomass

of organisms via overland transport tends to be limited.

Hence, its importance needs to be seen either through the

lens of guanotrophy – the enrichment of systems through

organism feces from elsewhere [49] – or in light of new

species that massively impact ecological processes (i.e.

grazing and/or vandalism by crayfish [50]). The latter also

applies for bi-directional movement within the hydrolog-

ical network, which may be relevant when the organisms

moving upstream modify their habitat, for example,

increased bioturbation by benthivorous fish [51].

Humans as transport modifiers
Humans have greatly modified the transport of energy,

substances and biota all over the world directly and by

affecting the water and organisms that carry them [52].

These changes may be aggravated by global climate

change through altered water flows and permanent or

periodical range shifts of organisms [53,54]. Some human-

induced transports are intentional because they form part

of the global food production chain, while others are side
Current Opinion in Environmental Sustainability 2019, 40:21–29 
effects such as the accidental introduction of invasive

species through ballast water [55]. Surface waters have

always been important routes for trade and travel, thereby

attracting human settlement and agricultural production

but putting stress on aquatic ecosystems. Moreover,

locally humans actively use the aquatic environment as

a source of food (fisheries, aquaculture), thereby creating

a cross-ecosystem flow of mass from the aquatic to the

terrestrial system. On regional and local scales humans

put great pressure on aquatic ecosystems in agricultural

and urbanised areas by the application of fertiliser and

pesticides, disposal of industrial and human waste, and

withdrawal of water for multiple uses (cf. crop irrigation,

drinking water production, industrial cooling and energy

production). Management efforts aim to set critical limits

to these practices to sustain continued delivery of a wide

range of ecosystem services [56�]. Such approaches often

aim to shield natural areas from waste loads and water

extraction – with mixed success. It proves to be even

harder – if not impossible – to shield natural areas from

invasive species, potentially leading to an invasional

meltdown [57].

Discussion
Assessing critical limits to anthropogenic pollution loads

not just on the scale of a water body [58] but on the scale

of the entire catchment poses an important next step in

safeguarding the ecosystem services of water for human

use [59]. Catchment-level hydrological and chemical

water and substance transport modelling is a well-

developed field (for an extensive review see Ref.

[60��]). Currently, these models tend to ignore the

ecological feedback on water quality or incorporate them

as fixed retention coefficients [59]. Ecological processes

are well-known to be relevant for nutrient retention [61].

Moreover, there is strong evidence for potentially

unexpected outcomes of ecological quality at larger

spatial scales (also see Macrosystems ecology [62]) due

to local ecological feedback causing, for example, cascad-

ing collapse of ecological states [63]. Hence, incorporating

AEMs into or onto catchment level transport models is

required to: (a) determine the limits to anthropogenic

pollution loading to surface waters including ecological

feedback, (b) maximize retention capacity along the

water network to minimize downstream impacts and

integrate this into downstream mitigation management

[64]. Here we identified the need of incorporating the

effect of water and organism flow on mass transport into

connected aquatic ecosystem models.

The easiest starting point in integrating catchment scale

transport models and AEMs is to use the outcome of

transport models as input to the AEMs. Resulting

hydrological, substance and (where possible) organism

flows from transport models are used to feed the AEM.

Studies using this approach are already being applied

[65,66] and advocated as ways to model any lake on earth
www.sciencedirect.com
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[4]. The next step will be to include ecology as an

inherent system property in transport models, advocating

for ecology as a driving factor modifying flows of water,

substances and energy. When using models, technically

this is not different from existing work which couples

hydrodynamic flow models to AEMs at scales of individ-

ual lakes [67,68,42]. Recent work has shown though, that

spatial structure in hydrological systems not necessarily
Figure 2
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causes heterogeneity in water quality [14,69]. In cases

where variations in the flow of water are proportional to

the amount of substances it carries, the loading of each

segment in terms of the inflowing concentration will be

invariant throughout the network and the resulting

ecology and water quality will be spatially homogeneous

(Figure 2a). In reality, however, water flow and the

amount of substances they carry will often be decoupled.
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This decoupling can be caused by different parts of the

network having inherently different surrounding

landscapes that impact them (e.g. land use intensity),

or by having inherently different properties themselves

(e.g. depth, ecological configuration) (Figure 2b). This

has important consequences for where in the network

water quality problems will arise and which water quality

measures will be effective.

Modelling ecological quality of a network of connected

systems in a spatial context is not synonymous with

coupled models. When a network is dominated by unidi-

rectional water flow, sequential modelling of every single

system with its inflows of water, organisms and substances

will suffice. The outflow from the first modelled system

may be used as part of the inflow for the consecutive

system in the network. Such an approach has been used

previously in connected models [70,6��]. Once flows

become bi-directional though, either due to water flow

inversion (due to human activity or water table changes at

the downstream location) or active movement of

organisms (Figure 2c), this approach will no longer

suffice. In this case, a fully coupled hydrodynamical

and ecological model will be needed, where water flow,

substances and organisms are actively exchanged at each

point in time between the different systems in the

modelled network. When organismal behaviour leads

to overland transport, a movement model of organism

behaviour including its habitat selection will be required

[71]. For example, grazing by birds on aquatic vegetation

can lead to a state shift [72]. As the local habitat loses its

food source, the birds will move to a new habitat, but by

doing so they alleviate grazing pressure from the first

system. This means that all aquatic systems, as well as the

movement of birds, would have to be modelled conjointly

to be able to predict the resulting ecological quality of the

systems in the catchment.

Modelling ecological quality of a network of connected

systems in a spatial context is worthwhile given that

feedback from one system to the next are important

drivers of the resulting state of the next system. The

inherent issue with this statement is that many ecological

processes and changes in ecological configuration are non-

linear, making it hard to predict when flows are going to

make relevant differences. Moreover, teleconnections

[73] between systems can lead to small changes in one

system causing a catastrophic collapse over a much larger

spatial distance, for example Ref. [43]. To a large extent,

the importance of explicitly modelling the ecology as a

modifier of the transport across local aquatic system

boundaries and its importance on a catchment level is

an open scientific question and is likely to depend on a

combination of uptake, residence and transport times and

the strength of connections between local systems [74].

Knowledge of how and when ecological feedback are

relevant to take into account is vital, not just for science,
Current Opinion in Environmental Sustainability 2019, 40:21–29 
but also for the management of our aquatic systems and

their surrounding landscape, especially in a rapidly

changing world [75�].

Towards catchment scale models for
application
The bridge between what science provides – knowledge

of studied systems – and what society demands – global

scenarios in the face of the Anthropocene – can be built

from both sides: upscaling the local perspective and

downscaling the global perspective. Here we advocate

to take both spatial approaches simultaneously, while

acknowledging that the tools to model all aquatic

ecosystems in full detail in one coherent model are not

yet available and may never become available. Irrespec-

tive of the approach, a simple spatial schematization is a

key prerequisite. We suggest to start from a simple node-

link schematization as is common in (sub-) catchment

modelling [23], with each node representing a

lake system and links representing transport corridors

(Figure 2). Different node level characteristics in terms

of local heterogeneity (Figure 2a versus b) and unidir-

ectionality versus bidirectionality in links (Figure 2b

versus c) will determine the need for linking transport

models and AEMs explicitly. More complex watershed

models and delineations would be the next step forward

(e.g. [76]). Starting simple, with node-link setups, and

only making explicit linkages between transport models

and AEMs when bidirectional transport occurs and is

relevant to explain model outcomes (and errors therein)

in spatially complex configurations.

Examples of catchment transport models [76,23] and

AEMs [26�] are plentiful in literature. Both offer potential

for the development of catchment models that

adequately account for ecological feedback, and thereby

allow for scenario analysis for management. PCLake is a

clear example of a model that fits in the upscaling

perspective. Developed to study phosphorus loading in

a specific lake in the Netherlands [58], it has now been

applied far outside of its calibration domain to study

eutrophication [77,78,42,68,79], but also all sorts of other

management practices that were not originally foreseen

[80,81,32] and has now been applied in spatial context

[82,66,69]. Such upscaling was enabled through technical

innovation [82–84] and a collaborative network of scien-

tists (for more of such examples see Refs. [85,86�]). The

perspective of downscaling processes is well represented

through the evolution of the VEMALA model applied for

Finnish catchments. The model started off as a

catchment model with a spatially developed explicit lake

network description and simple calibrated lake-specific

retention coefficients [5�]. Through ongoing develop-

ment, these coefficients have now been replaced with

an ecological process-based submodel (VEMALA v3

[64]). The model is currently being used (a) to provide

fractions of bioavailable nutrient input to the inland and
www.sciencedirect.com
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marine water bodies [64] and (b) to assess the effect of the

retention in the catchment to inform spatial planning of

mitigation measures in hopes of meeting Marine Strategy

Framework Directive (MSFD) goals for the Baltic Sea.

Worldwide, waterscapes provide essential services to

humanity but face threats, ranging from invasive species

to eutrophication. Such threats to aquatic ecosystems can

be local, but often act on a regional scale because of the

inter-waterbody transport of energy, substances and biota

by water and organisms as vectors. Understanding and

predicting these exchanges in a catchment context with

process-based AEMs will help to manage aquatic

ecosystems, set policy targets at the catchment scale

and continue to benefit from the services that ecosystems

provide. To exemplify this in the context of the water–

food–energy nexus, fertiliser and pesticide application for

food production leads to the eutrophication and

toxification of aquatic ecosystems. The resulting local

degradation of surface water quality and altered

ecosystem state and functioning will result in a lower

retention and removal of nutrients and pollutants in

networks of connected lakes, thereby threatening the

use of water for irrigation (endangering food production)

and aggravating eutrophication problems downstream.

These processes involve multiple feedback loops and

spatial differentiation in the sources and flows of water,

energy, substances and biota. Spatially explicit AEMs on

(sub-) catchment scale can help to get a grip on such

complex interactions and are key to setting critical limits

to the release of substances to aquatic ecosystems by

human practices such as agricultural food production.
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