260 research outputs found

    A neurophenomenological fMRI study of a spontaneous automatic writer and a hypnotic cohort

    Get PDF
    Purpose: To evaluate the neurophenomenology of automatic writing (AW) in a spontaneous automatic writer (NN) and four high hypnotizables (HH). Methods: During fMRI, NN and the HH were cued to perform sponta- neous (NN) or induced (HH) AW, and a comparison task of copying complex symbols, and to rate their expe- rience of control and agency. Results: Compared to copying, for all participants AW was associated with less sense of control and agency and decreased BOLD signal responses in brain regions implicated in the sense of agency (left premotor cortex and insula, right premotor cortex, and supplemental motor area), and increased BOLD signal responses in the left and right temporoparietal junctions and the occipital lobes. During AW, the HH differed from NN in widespread BOLD decreases across the brain and increases in frontal and parietal regions. Conclusions: Spontaneous and induced AW had similar effects on agency, but only partly overlapping effects on cortical activity

    The role of tissue microstructure and water exchange in biophysical modelling of diffusion in white matter.

    Get PDF
    Biophysical models that describe the outcome of white matter diffusion MRI experiments have various degrees of complexity. While the simplest models assume equal-sized and parallel axons, more elaborate ones may include distributions of axon diameters and axonal orientation dispersions. These microstructural features can be inferred from diffusion-weighted signal attenuation curves by solving an inverse problem, validated in several Monte Carlo simulation studies. Model development has been paralleled by microscopy studies of the microstructure of excised and fixed nerves, confirming that axon diameter estimates from diffusion measurements agree with those from microscopy. However, results obtained in vivo are less conclusive. For example, the amount of slowly diffusing water is lower than expected, and the diffusion-encoded signal is apparently insensitive to diffusion time variations, contrary to what may be expected. Recent understandings of the resolution limit in diffusion MRI, the rate of water exchange, and the presence of microscopic axonal undulation and axonal orientation dispersions may, however, explain such apparent contradictions. Knowledge of the effects of biophysical mechanisms on water diffusion in tissue can be used to predict the outcome of diffusion tensor imaging (DTI) and of diffusion kurtosis imaging (DKI) studies. Alterations of DTI or DKI parameters found in studies of pathologies such as ischemic stroke can thus be compared with those predicted by modelling. Observations in agreement with the predictions strengthen the credibility of biophysical models; those in disagreement could provide clues of how to improve them. DKI is particularly suited for this purpose; it is performed using higher b-values than DTI, and thus carries more information about the tissue microstructure. The purpose of this review is to provide an update on the current understanding of how various properties of the tissue microstructure and the rate of water exchange between microenvironments are reflected in diffusion MRI measurements. We focus on the use of biophysical models for extracting tissue-specific parameters from data obtained with single PGSE sequences on clinical MRI scanners, but results obtained with animal MRI scanners are also considered. While modelling of white matter is the central theme, experiments on model systems that highlight important aspects of the biophysical models are also reviewed

    Anticipating morphological and syntactic structures : investigating the pre-activation negativity

    Get PDF
    It is known that listeners can predict upcoming words based on constraining contexts (e.g. DeLong et al., 2005). In a recent study, we proposed a left frontal brain potential, the pre-activation negativity, PrAN (Söderström et al., 2016), thought to reflect pre-activation of expected word continuations. Time-locked to word-initial fragments, PrAN’s amplitude was found to increase in a 136-280 ms time window as the number of possible continuations decreased, suggesting that PrAN increased with increased predictive certainty about a word’s ending. In the present study, we tested whether a similar effect could be found for pre-activation of expected syntactic structures. In Swedish, intonation is used to signal whether an unfolding embedded clause is a main or subordinate clause. Specifically, a clause-initial word with a low boundary tone cues only subordinate clause structure. Conversely, a corresponding high tone signals that any kind of embedded main clause structure may follow, i.e. it cues a more open set of structures. Test participants listened to complex sentences and judged the word order of the verb (V) and negation (NEG) after the boundary tone as quickly as possible (NEG–V word order occurs in subordinate clauses and V–NEG in main clauses). ERPs were time-locked to the tone-bearing syllable. A repeated-measures ANOVA showed a negativity in left anterior electrodes at 136-280 ms for low initial boundary tones, which cue only subordinate clauses. We propose that this effect is a PrAN, but that it here reflects pre-activation of syntactic structures rather than possible word endings

    Selective frontal neurodegeneration of the inferior fronto-occipital fasciculus in progressive supranuclear palsy (PSP) demonstrated by diffusion tensor tractography

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The clinical presentation in progressive supranuclear palsy (PSP), an atypical parkinsonian disorder, includes varying degrees of frontal dysexecutive symptoms. Using diffusion tensor imaging (DTI) and tractography (DTT), we investigated whether diffusion changes and atrophy of the inferior fronto-occipital fasciculus (IFO) occurs in PSP and if these changes correlate with disease stage and clinical phenotype. The corticospinal tract (CST), which is often involved in PSP, was investigated for comparison.</p> <p>Methods</p> <p>DTI of the whole brain was performed with a 3 T MR scanner using a single shot-EPI sequence with diffusion encoding in 48 directions. Scans were obtained in patients with PSP (n = 13) and healthy age-matched controls (n = 12). DTT of the IFO and CST was performed with the PRIDE fibre tracking tool (Philips Medical System). Fractional anisotropy (FA) and apparent diffusion coefficient (ADC) were calculated and correlated with disease stage and clinical phenotype.</p> <p>Results</p> <p>In patients with PSP, significantly decreased FA and increased ADC was found in the frontal part of IFO compared with the medial and occipital parts of IFO, as well as compared to controls. Four of the thirteen patients with PSP showed a marked decrease in the number of tracked voxels in the frontal part of IFO. These findings were most pronounced in patients with severe frontal cognitive symptoms, such as dysexecutive problems, apathy and personality change. There was a strong correlation (r<sup>2 </sup>= -0.84; p < 0,001) between disease stage and FA and ADC values in the CST.</p> <p>Conclusions</p> <p>DTT for identification of neuronal tracts with subsequent measurement of FA and ADC is a useful diagnostic tool for demonstrating patterns of neuronal tract involvement in neurodegenerative disease. In selected tracts, FA and ADC values might act as surrogate markers for disease stage.</p

    Word tones cueing morphosyntactic structure: Neuroanatomical substrates and activation time-course assessed by EEG and fMRI

    Get PDF
    AbstractPrevious studies distinguish between right hemisphere-dominant processing of prosodic/tonal information and left-hemispheric modulation of grammatical information as well as lexical tones. Swedish word accents offer a prime testing ground to better understand this division. Although similar to lexical tones, word accents are determined by words’ morphosyntactic structure, which enables listeners to use the tone at the beginning of a word to predict its grammatical ending. We recorded electrophysiological and hemodynamic brain responses to words where stem tones matched or mismatched inflectional suffixes. Tones produced brain potential effects after 136ms, correlating with subject variability in average BOLD in left primary auditory cortex, superior temporal gyrus, and inferior frontal gyrus. Invalidly cued suffixes activated the left inferior parietal lobe, arguably reflecting increased processing cost of their meaning. Thus, interaction of word accent tones with grammatical morphology yielded a rapid neural response correlating in subject variability with activations in predominantly left-hemispheric brain areas

    Fingersomatotopy in area 3b: an fMRI-study

    Get PDF
    BACKGROUND: The primary sensory cortex (S1) in the postcentral gyrus is comprised of four areas that each contain a body map, where the representation of the hand is located with the thumb most laterally, anteriorly and inferiorly and the little finger most medially, posteriorly and superiorly. Previous studies on somatotopy using functional MRI have either used low field strength, have included a small number of subjects or failed to attribute activations to any area within S1. In the present study we included twenty subjects, who were investigated at 3 Tesla (T). We focused specifically on Brodmann area 3b, which neurons have discrete receptive fields with a potentially more clearcut somatotopic organisation. The spatial distribution for all fingers' peak activation was determined and group as well as individual analysis was performed. RESULTS: Activation maps from 18 subjects were of adequate quality; in 17 subjects activations were present for all fingers and these data were further analysed. In the group analysis the thumb was located most laterally, anteriorly and inferiorly with the other fingers sequentially positioned more medially, posteriorly and superiorly. At the individual level this somatotopic relationship was present for the thumb and little finger, with a higher variability for the fingers in between. The Euclidian distance between the first and fifth finger was 17.2 mm, between the first and second finger 10.6 mm and between the remaining fingers on average 6.3 mm. CONCLUSION: Results from the group analysis, that is both the location of the fingers and the Euclidian distances, are well comparable to results from previous studies using a wide range of modalities. On the subject level the spatial localisation of the fingers showed a less stringent somatotopic order so that the location of a finger in a single subject cannot be predicted from the group result

    Variability in diffusion kurtosis imaging: Impact on study design, statistical power and interpretation.

    Get PDF
    Diffusion kurtosis imaging (DKI) is an emerging technique with the potential to quantify properties of tissue microstructure that may not be observable using diffusion tensor imaging (DTI). In order to help design DKI studies and improve interpretation of DKI results, we employed statistical power analysis to characterize three aspects of variability in four DKI parameters; the mean diffusivity, fractional anisotropy, mean kurtosis, and radial kurtosis. First, we quantified the variability in terms of the group size required to obtain a statistical power of 0.9. Second, we investigated the relative contribution of imaging and post-processing noise to the total variance, in order to estimate the benefits of longer scan times versus the inclusion of more subjects. Third, we evaluated the potential benefit of including additional covariates such as the size of the structure when testing for differences in group means. The analysis was performed in three major white matter structures of the brain: the superior cingulum, the corticospinal tract, and the mid-sagittal corpus callosum, extracted using diffusion tensor tractography and DKI data acquired in a healthy cohort. The results showed heterogeneous variability across and within the white matter structures. Thus, the statistical power varies depending on parameter and location, which is important to consider if a pathogenesis pattern is inferred from DKI data. In the data presented, inter-subject differences contributed more than imaging noise to the total variability, making it more efficient to include more subjects rather than extending the scan-time per subject. Finally, strong correlations between DKI parameters and the structure size were found for the cingulum and corpus callosum. Structure size should thus be considered when quantifying DKI parameters, either to control for its potentially confounding effect, or as a means of reducing unexplained variance

    Tensor-valued diffusion MRI in under 3 minutes: An initial survey of microscopic anisotropy and tissue heterogeneity in intracranial tumors

    Full text link
    Purpose: To evaluate the feasibility of a 3-minute b-tensor encoding protocol for diffusion MRI-based assessment of the microscopic anisotropy and tissue heterogeneity in a wide range of intracranial tumors. Methods: B-tensor encoding was performed in 42 patients with intracranial tumors (gliomas, meningiomas, adenomas, metastases). Microscopic anisotropy and tissue heterogeneity were evaluated by estimating the anisotropic kurtosis (MKAMK_A) and isotropic kurtosis (MKIMK_I), respectively. An extensive imaging protocol was compared with a faster 3-minute protocol. Results: The fast imaging protocol yielded parameters with characteristics in terms of bias and precision similar to the full protocol. Glioblastomas had lower microscopic anisotropy than meningiomas (MKA=0.29±0.06(MK_A = 0.29 \pm 0.06 versus 0.45±0.08,p=0.003)0.45\pm0.08, p = 0.003). Metastases had higher tissue heterogeneity (MKI=0.57±0.07)(MK_I = 0.57\pm0.07) than both the glioblastomas (0.44±0.06,p<0.001)(0.44\pm0.06, p < 0.001) and meningiomas (0.46±0.06,p=0.03)(0.46\pm0.06, p = 0.03). Conclusion: Evaluation of the microscopic anisotropy and tissue heterogeneity in intracranial tumor patients is feasible in clinically relevant times frames.Comment: Submitted to Magnetic Resonance in Medicin

    Absolute quantification of perfusion by dynamic susceptibility contrast MRI using Bookend and VASO steady-state CBV calibration: a comparison with pseudo-continuous ASL.

    Get PDF
    Dynamic susceptibility contrast MRI (DSC-MRI) tends to return elevated estimates of cerebral blood flow (CBF) and cerebral blood volume (CBV). In this study, subject-specific calibration factors (CFs), based on steady-state CBV measurements, were applied to rescale the absolute level of DSC-MRI CBF

    Correlation between arterial blood volume obtained by arterial spin labelling and cerebral blood volume in intracranial tumours.

    Get PDF
    OBJECTIVE: To compare measurements of the arterial blood volume (aBV), a perfusion parameter calculated from arterial spin labelling (ASL), and cerebral blood volume (CBV), calculated from dynamic susceptibility contrast (DSC) MRI. In the clinic, CBV is used for grading of intracranial tumours. MATERIALS AND METHODS: Estimates of aBV from the model-free ASL technique quantitative STAR labelling of arterial regions (QUASAR) experiment and of DSC-CBV were obtained at 3T in ten patients with eleven tumours (three grade III gliomas, four glioblastomas and four meningiomas, two in one patient). Parametric values of aBV and CBV were determined in the tumour as well as in normal grey matter (GM), and tumour-to-GM aBV and CBV ratios were calculated. RESULTS: In a 4-pixel ROI representing maximal tumour values, the coefficient of determination R (2) was 0.61 for the comparison of ASL-based aBV tumour-to-GM ratios and DSC-MRI-based CBV tumour-to-GM ratios and 0.29 for the comparison of parametric values of ASL-aBV and DSC-CBV, under the assumption of proportionality. Both aBV and CBV showed a non-significant tendency to increase when going from grade III gliomas to glioblastomas to meningiomas. CONCLUSION: These results suggest that measurement of aBV is a potential tool for non-invasive assessment of blood volume in intracranial tumours
    corecore