
LUND UNIVERSITY

PO Box 117
221 00 Lund
+46 46-222 00 00

Variability in diffusion kurtosis imaging: Impact on study design, statistical power and
interpretation.

Szczepankiewicz, Filip; Lätt, Jimmy; Wirestam, Ronnie; Leemans, Alexander; Sundgren, Pia;
van Westen, Danielle; Ståhlberg, Freddy; Nilsson, Markus
Published in:
NeuroImage

DOI:
10.1016/j.neuroimage.2013.02.078

2013

Link to publication

Citation for published version (APA):
Szczepankiewicz, F., Lätt, J., Wirestam, R., Leemans, A., Sundgren, P., van Westen, D., Ståhlberg, F., &
Nilsson, M. (2013). Variability in diffusion kurtosis imaging: Impact on study design, statistical power and
interpretation. NeuroImage, 76(1), 145-154. https://doi.org/10.1016/j.neuroimage.2013.02.078

Total number of authors:
8

General rights
Unless other specific re-use rights are stated the following general rights apply:
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors
and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.
 • Users may download and print one copy of any publication from the public portal for the purpose of private study
or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal

Read more about Creative commons licenses: https://creativecommons.org/licenses/
Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove
access to the work immediately and investigate your claim.

https://doi.org/10.1016/j.neuroimage.2013.02.078
https://portal.research.lu.se/en/publications/c5abb21f-2bef-46aa-9a22-dfcbdf53f2d5
https://doi.org/10.1016/j.neuroimage.2013.02.078


1 
 

Title: 

Variability in diffusion kurtosis imaging: Impact on study design, statistical power and 
interpretation 

 

Author names and affiliations: 

Filip Szczepankiewicz1 
Jimmy Lätt2 
Ronnie Wirestam1 
Alexander Leemans3 
Pia Sundgren2,4 
Danielle van Westen4 
Freddy Ståhlberg1,4,5 
Markus Nilsson5 

 
1 Department of Medical Radiation Physics, Lund University, Lund, Sweden 
2 MR Department, Centre for Medical Imaging and Physiology, Lund University Hospital, 
Lund, Sweden 
3 Image Sciences Institute, University Medical Center Utrecht, Utrecht, The Netherlands 
4 Department of Diagnostic Radiology, Lund University, Lund, Sweden 
5 Lund University Bioimaging Center, Lund University, Lund, Sweden 
 

Corresponding author: 

Filip Szczepankiewicz 
Lund University, Department of Medical Radiation Physics 
Barngatan 2, 22185, Lund, Sweden 
E-mail: filip.szczepankiewicz@med.lu.se 
Telephone: +46–46–178543 
 

Manuscript info: 

Word count – 6200 + figure/table captions 
Figure count – 4 
Table count – 4 
 

  



2 
 

Abstract: 

Diffusion kurtosis imaging (DKI) is an emerging technique with the potential to quantify 

properties of tissue microstructure that may not be observable using diffusion tensor 

imaging (DTI). In order to help design DKI studies and improve interpretation of DKI 

results, we employed statistical power analysis to characterize three aspects of variability 

in four DKI parameters; the mean diffusivity, fractional anisotropy, mean kurtosis, and 

radial kurtosis. First, we quantified the variability in terms of the group size required to 

obtain a statistical power of 0.9. Second, we investigated the relative contribution of 

imaging and post-processing noise to the total variance, in order to estimate the benefits of 

longer scan times versus the inclusion of more subjects. Third, we evaluated the potential 

benefit of including additional covariates such as the size of the structure when testing for 

differences in group means. The analysis was performed in three major white matter 

structures of the brain: the superior cingulum, the corticospinal tract, and the mid-sagittal 

corpus callosum, extracted using diffusion tensor tractography and DKI data acquired in a 

healthy cohort. The results showed heterogeneous variability across and within the white 

matter structures. Thus, the statistical power varies depending on parameter and location, 

which is important to consider if a pathogenesis pattern is inferred from DKI data. In the 

data presented, inter-subject differences contributed more than imaging noise to the total 

variability, making it more efficient to include more subjects rather than extending the 

scan-time per subject. Finally, strong correlations between DKI parameters and the 

structure size were found for the cingulum and corpus callosum. Structure size should thus 

be considered when quantifying DKI parameters, either to control for its potentially 

confounding effect, or as a means of reducing unexplained variance.  
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1. Introduction 

Diffusion kurtosis imaging (DKI) is a technique that has been suggested to show higher 

sensitivity and specificity than diffusion tensor imaging (DTI) in detecting and 

differentiating alterations of tissue microstructure (Cauter et al., 2012, Cheung et al., 2009, 

Grossman et al., 2012, Wang et al., 2011, Wu and Cheung, 2010). Being an extension of 

DTI, DKI provides conventional DTI-based parameters, such as the mean diffusivity 

(MD) and the fractional anisotropy (FA), and unique parameters that describe the degree 

to which the water diffusion is non-Gaussian. This information is most commonly 

represented by the mean diffusional kurtosis (MK) and radial diffusional kurtosis (RK) 

(Jensen et al., 2005, Jensen et al., 2010), that can be related to properties of the tissue 

microstructure, for example, the axonal water fraction and the tortuosity of the 

extracellular space in white matter (WM) (Fieremans et al., 2011). In its application to 

clinical research, DKI has rendered promising results in studies of, for example, reactive 

astrogliosis (Zhuo et al., 2012), age-related diffusional changes (Falangola et al., 2008), 

and has been reported to outperform conventional DTI in the detection of Parkinson's 

disease (Wang et al., 2011) and in the grading of gliomas (Cauter et al., 2012). DKI has 

also been performed outside of the brain, for example, in the spinal cord (Hori et al., 2012, 

Szczepankiewicz et al., 2011). 

In light of the emerging popularity of DKI, it is interesting to elucidate the statistical 

characteristics of the extracted parameters. Using a statistical power analysis, the 

variability of any parameter can be evaluated in terms of, for example, the minimal group 

size required to detect a true difference in means (effect size) at a predefined probability 
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(statistical power) (Cohen, 1976, Lenth, 2001, Maxwell et al., 2008). It may also inform 

better interpretation of experimental results by complementing statistical significance tests 

with information about the probability at which the test successfully rejects a false null 

hypothesis (Cohen, 1976).  

A prerequisite to perform a power analysis is knowledge of the parameter variance and 

relevant effect size. Several studies have been dedicated to analyzing variability in DTI 

parameters. Heiervang et al. (2006) performed a statistical power analysis for several WM 

structures and various tracking methods, showing that inter-subject coefficients of 

variation (CV) for MD and FA were below 8% and 10%, respectively. Variations in the 

mean and standard deviation of DTI parameters have also been demonstrated within WM 

structures (Colby et al., 2012, Corouge et al., 2006, Wakana et al., 2007). Wakana et al. 

(2007) investigated the reproducibility in FA and structure size in several WM structures, 

and found that a 10% difference in fiber-bundle volume required a group size 10 times 

larger than that required to detect a 10% difference in FA, indicating a higher variance in 

the size parameter compared to FA. Variability is also introduced by the hardware and the 

post-processing of data. Pfefferbaum et al. (2003) compared within- and between-scanner 

reliability on two similar but not identical scanners, and reported a systematic mean bias 

across scanners with CVs of 7.5% and 4.5% for MD and FA, respectively. Few studies 

have analyzed the variability of DKI-specific parameters, however, data reported by Lätt 

et al. (2012), on the mean and standard deviations in 21 manually segmented structures, 

can be used to calculate CVs for the most frequently used DKI parameters. The CV, 

averaged across all structures, was lowest for MD and MK, with values of 5% and 8%, 

respectively, and highest in FA and RK with values of 10% and 14%, respectively. These 
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values indicate that the variability in MK and RK is larger but comparable to that found 

for MD and FA. However, more detailed information could improve study design and aid 

the interpretation of experimental results. 

The aim of this study was, therefore, to evaluate three aspects of DKI parameter 

variability: the global and along-tract variability, the inter- and intra-subject variability, 

and the amount of variability explained by the WM structure size. The results were used to 

estimate the minimal group sizes required to find a physiologically relevant effect size, to 

quantify the advantage of increasing group size versus extending scan time per subject, 

and to estimate whether the introduction of additional covariates, such as the structure 

size, may lower demands on group size. The study was based on three major WM 

structures in the brain, defined using tractography-based segmentation.  

2. Theory 

2.1. Statistical power and group size 

The power of a statistical test (π) represents its probability to correctly reject the null-

hypothesis, i.e., “there is no significant difference in means between two groups”. For a t-

test, π can be estimated from the t statistic and the number of samples in each group, here 

referred to as the group size (n), given a predefined significance level (α) and an effect 

size defined as the absolute (Δµ) or relative (Δµ/µ) difference in group means, 

respectively. The t statistic used for testing whether the means of two groups are 

significantly different is given by  
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where SE(Δµ) is the standard error of the difference in group mean values, given by 

SE(Δµ) = (2V/n)1/2 if the two groups are equal in size and have equal variance (V) 

(Vittinghoff et al., 2005).  

Statistical power analysis may also be used to predict how a modification to an 

experimental protocol will influence the minimal group size. Below, we analyzed the 

influence on group size requirements from study-design alterations such as extending the 

acquisition time or correcting for hidden covariates. 

2.2. Parameter variance 

Since the statistical power is related to the variance of the parameter under investigation, 

reducing the variance will reduce the required group size. The measured parameters can 

be modeled by a stochastic variable Y, described by the population mean (µ), the group-

dependent deviation from the mean, that is the effect size (Δµ), and a stochastic error term 

(Etotal), according to 

 ,totalEGY +⋅Δ+= µµ
 Eq. 2 

where G = [0,1] is a discrete index of group affiliation (G = 0 for controls and G = 1 for 

the experimental or patient group) (Vittinghoff et al., 2005). The error term can be 

described by a two-level random-effects model, where Etotal is the sum of two independent 

error terms Etotal = Einter + Enoise (Clayden et al., 2006, Laird and Ware, 1982). Here, Einter 

and Enoise represent the inter-subject variability and the variability introduced by imaging 
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and post-processing noise, with variances Vinter and Vnoise, respectively. The total variance 

is thus the sum of the inter-subject and noise variances, according to 

 .noiseintertotal VVV +=  Eq. 3 

Estimating the total variance in a new acquisition protocol (V′total) is possible by studying 

how the noise component is modified, according to 
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Two important factors affecting g are the signal-to-noise ratio per signal acquisition 

(SNR), and the acquisition time (T) of the new and the old protocol: 

g ∝ (T′/T)1/2 ⋅ (SNR′/SNR), assuming that T is proportional to the total number of acquired 

images. The factor g, and the new group size (n′) both have an effect on the denominator 

in Eq. 1, according to 
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where RVnoise = Vnoise/Vtotal is the relative variance contribution from noise in the old 

protocol. Assuming large groups, the new and old protocol will have equal power if 

SE(Δµ′) = SE(Δµ), and the new group size will be given by 
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Eq. 6 shows that an increase in g has the strongest effect on n′ when RVnoise is relatively 

large, that is when most of the total variance is due to noise. In other words, for a fixed 
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statistical power, an increase in SNR or T can reduce the demand on group size n′. 

Likewise, a reduction in total scan time would increase the demand on the group size. 

2.3. Parameter covariance 

DKI parameters are influenced by properties of the tissue microstructure (Fieremans et al., 

2011), but may also be affected by other factors, such as the partial volume effect (PVE) 

(Cao and Gold, 2008, Vos et al., 2011), image distortions, subject motion and post-

processing, among many others (Jones and Cercignani, 2010). Some of these effects may 

be corrected for by expanding the model in Eq. 2 to include additional predictors. The 

addition of one predictor (x) to Eq. 2 results in 

 ,´´´ totalExkGY +⋅+⋅Δ+= µµ  Eq. 7 

where k denotes the regression coefficient of the predictor, and E′total is the new error term 

(Vittinghoff et al., 2005). Identifying significant predictors means that their contribution to 

the variance of the error factor can be removed, resulting in a modified residual variance, 

according to 
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where R2
Y,G is the coefficient of determination for regression of Y on the group term G, 

and R2
Y,[G,x] is the coefficient of determination for regression of Y on G and the predictor x. 

The effect on the standard error of the estimated effect size is 
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where the term (1 – R2
G,x) –1 is commonly referred to as the variance inflation factor, since 

it inflates the standard error of Δµ in cases where correlation between G and x exists, and 

may even outweigh the benefits of an additional predictor (Vittinghoff et al., 2005). 

However, if the groups are matched with respect to x, i.e., the two groups have equal mean 

values of x, the value of R2
G,x is zero, resulting in no inflation and a guaranteed reduction 

in the standard error of the estimated effect size. Assuming that the compared groups are 

large (2n – 2 ≈ 2n – 3, in Eq. 8) and matched with respect to x (RG,x = 0, in Eq. 9), the 

minimal group size after accounting for the additional covariate is given by 
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In analogy with the improvements arising from increased SNR or extended acquisition 

times, Eq. 9 and Eq. 10 show that reducing the standard error of Δµ, by accounting for 

covariates, can be translated into increased statistical power or reduced demands on group 

size. 

3. Methods 

3.1. Data acquisition and post-processing 

In order to assess the variability characteristics of DKI parameters, DKI was performed on 

31 healthy volunteers (12 male, 19 female, age 36 ± 13 years). The study was approved by 

the local ethics committee and informed consent was obtained from all volunteers. 

Imaging was performed on a Philips Achieva 3 T MRI scanner, with a maximum gradient 



11 
 

amplitude of 80 mT/m, using an 8-channel head coil. The DKI protocol consisted of one 

volume acquired with b = 0 s/mm2, followed by 60 diffusion-weighted volumes in which 

the diffusion encoding was applied in 15 non-collinear encoding directions with b-values 

of 500, 1000, 2500 and 2750 s/mm2. The selection of b-values was based on the protocol 

optimized by Poot et al. (2010). The image volume consisted of 35 contiguous axial slices 

at a spatial resolution of 2×2×2 mm3, covering the CG, CC and CST (from the cerebral 

peduncle to the centrum semiovale). The echo time (TE) was 76 ms, repetition time (TR) 

was 7855 ms, half-scan factor was 0.78, SENSE factor was 2, and bandwidth was 2970 

Hz, resulting in a scan time of 8:15 min. Motion and eddy current distortions were 

corrected in ExploreDTI (Leemans et al., 2009) where ElastiX (Klein et al., 2010) was 

used to register the images. The images were inspected for motion, ensuring that no image 

volume was rotated more than 2.5° during the acquisition. Parameter maps, including MD, 

FA, MK and RK, were calculated using in-house developed software, implemented in 

Matlab (The Mathworks, Natick, MA, USA). In this procedure, the diffusion-weighted 

images were modulated with the Jacobian determinant (Jones and Cercignani, 2010). In 

order to mitigate the potential effects of Gibbs ringing artifacts, all image volumes were 

smoothed using an isotropic 3D Gaussian kernel with a full width at half maximum of 2 

mm (Veraart et al., 2012). This kernel size has little effect on sensitivity and specificity 

(Van Hecke et al., 2009), thus, it is not expected to significantly influence the parameter 

precision. 
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3.2. Bootstrapping 

To estimate the variance component caused by noise, one oversampled set of data was 

acquired to facilitate a bootstrap analysis (Jones and Pierpaoli, 2005). This data was 

acquired in an extended imaging session for one of the volunteers, in which the DKI 

protocol was repeated in seven subsequent acquisitions with a total scan time of 

approximately 65 min. The subject was not repositioned between acquisitions. By 

randomly selecting one out of the seven image volumes for every combination of 

encoding strength and direction, 200 bootstrapped data sets were created, each with a 

composition corresponding to those acquired in the control group. This number of 

bootstraps, given the seven original data sets with 60 direction and b-value combinations 

in each, is expected to generate a reliable distribution of parameters (O'Goreman and 

Jones, 2006), where the CV of the relative noise contribution is given by CV(RVnoise) = 

(2/N)1/2, i.e., 10% for N = 200. Individual post-processing and parameter calculation was 

performed on all of the simulated sets of data in a way identical to that performed in the 

control group. The bootstrapping generated unique noise realizations, allowing the 

resulting parameter variance to be attributed to imaging and post-processing noise only 

and thereby provide an estimate of Vnoise in Eq. 3.  

3.3. Structure definition 

Three major WM structures were investigated: the superior cingulum bundle (CG), the 

medial motor corticospinal tract (CST) and the mid-sagittal corpus callosum (CC). These 

structures were selected to represent some of the structures most commonly investigated 

with diffusion tensor tractography, which also offer a variety of features, such as 
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proximity to CSF and gray matter (GM), and varying geometrical configurations. The 

structures were defined in native space using manually defined geometrical inclusion 

criteria (AND-gates, commonly referred to as ROIs) as shown in Figure 1. The structures 

were segmented from a whole-brain tractography (diffusion tensor was fit to b = 0, 500 

and 1000 s/mm2), generated in TrackVis (Wang et al., 2007), using a deterministic 

interpolated streamline algorithm. Track termination was based on a FA threshold of 0.2 

and an angle threshold of 30°.  

The CG was delineated using three AND-gates, combined in gate pairs, and positioned to 

include the superior CG bundle (Fig. 1A). Gates were defined in coronal projections and 

the mid-sagittal CC was employed as an anatomical reference. The gates were aligned 

with the anterior (Ant), central (Cent) and posterior (Post) part of the mid-sagittal CC 

body, and landmarks were placed at the center of each gate. The CST was delineated using 

two AND-gates (Fig. 1D), defined in axial projections and placed around the peduncle 

(Inf) and the medial motor area of the cortex (Sup). Landmarks were defined at each gate 

and at the level of the ventricles (Cent). The CC was extracted using two AND-gates, 

separated by 12 mm and centered on the mid-sagittal plane, that excluded the tracts 

outside of the intersections so that a truncated mid-sagittal segment was selected (Fig. 

1G). The landmarks were placed at the inferior edges of the genu (Ant) and splenium 

(Post), as well as at the boundary between the body and the genu (PreA) and the splenium 

(PreP), respectively.  

The sub-segments of each structure were defined by the intervals between landmarks, 

creating two sub-segments in the CG and CST, and three sub-segments in the CC. 
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Tractography and parameter extraction were performed independently on all of the 

bootstrapped data sets.  

3.4. Parameter evaluation 

Diffusion parameters were calculated as a function of position to retain spatial information 

along the tract, employing an evaluation method resembling that presented by Colby et al. 

(2012). The evaluation was performed in three steps. First, a single mean track was 

created to represent the geometrical features of the track bundle. Second, diffusion 

parameters were projected onto the mean track to create parameter vectors. In the final 

step, the parameter vectors were normalized across subjects using anatomical landmarks 

as points of reference. Figure 1 shows representative tractographies of the CG, CST and 

CC (Fig. 1A, D, G), along with the point cloud that makes up the tracts and constituted the 

cross-sections selected along the mean track (Fig. 1B, E, H). All calculations were 

performed using in-house developed software, implemented in Matlab, and details on the 

three steps are given below. 

The first step was to calculate the mean track, which was represented by a number of 

consecutive points in 3D-space (mi), with each point placed at the center of mass of the 

cross section of the track bundle. Note that the mean track in the CG and CST is directed 

along the WM fibers, while in the CC it runs perpendicular to the WM fibers (Fig. 1).  

In the second step, projection of the diffusion parameters to the mean track was performed 

by averaging the parameter values from all points in the cross section associated with mi. 

The cross section included at most one point per track, with the point selected being the 

one closest to a plane with normal n = mi + 1 – mi, with its origin in mi. Only points within 
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1 mm distance from each plane were included in the cross section, resulting in a cross 

section thickness of 2 mm. The calculation of the apparent structure size (AS) was 

performed by determining the apparent radius (in the case of the CG and CST) or 

thickness (in the case of the CC) of the tract bundle mask at each cross section. The area of 

the mask was calculated by representing each point in the cross-section by a circle with 

radius 0.5 mm (Fig 1C, F, I). Only non-overlapping parts of the circles contributed to the 

AS. 

In the third step, the individual parameter vectors were normalized in order to align them 

with respect to the anatomical landmarks. Each landmark was first associated with the 

point on the mean track closest to the landmark, which allowed the calculation of average 

interval lengths, i.e., the mean path track lengths between two landmarks. Next, the mean 

tracks and their associated parameter vectors were linearly interpolated so that the interval 

lengths of the individual mean tracks conformed to the average interval lengths. Further, 

the mean tracks were resampled to contain 100 equidistant elements per DKI parameter 

and WM structure, on which the final analysis was performed. To simplify the 

presentation of results for bilateral structures, the CG and CST estimates were evaluated 

as the average of both sides for each individual subject.  

3.5. Statistical analysis 

The statistical analysis comprised three aspects, all performed to improve the design of 

future DKI studies: first, calculating the group size required to find a subtle difference in 

group means, second, answering the question of whether to scan longer per subject or 

more subjects by analyzing the relative contribution of noise to the total variance, and 
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third, analyzing the potential reduction in group size requirement resulting from the 

addition of relevant covariates. 

The group sizes required to obtain a statistical power of π = 0.9 at a relative effect size of 

5% (i.e., absolute effect size was Δµ = 0.05 ⋅ µ) were calculated for whole structures and 

sub-segments. We assumed that the difference in group mean values was tested using a 

two-tailed Student's t-test at a significance level of α = 0.05, assuming that the control and 

experimental groups were of equal sizes. Furthermore, the analysis assumed equal 

variance in both groups, with a value given by that observed in the group of healthy 

volunteers. Even at a moderate departure from the assumption of equal group size and 

variance, the analysis is expected to produce robust estimates of the t-statistic and the 

statistical power of the study (Cohen, 1976). The effect size was chosen to represent a 

subtle but physiologically relevant change in DKI parameters, according to a survey of 

relevant DTI and DKI studies of the brain (Table 1). In this compilation, the approximate 

span of relative effect sizes is between 1 and 30%. However, it should be noted that the 

relative effect size can be much higher for more severe tissue alterations such as tumors 

and edema (Cauter et al., 2012, Harris et al., 2008, Jensen et al., 2011). Required group 

sizes were calculated by iteratively adjusting n until the desired statistical power was 

reached.  

The total variance, measured in the control group, was separated into inter-subject 

variance and imaging noise variance in order to determine the effect of increasing scan 

time or group size (Eq. 6). The noise component (Vnoise) was estimated from the 

bootstrapped data, by assuming that the variance in the simulated data was due to noise. 
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To obtain Vinter, the noise component was subtracted from the total variance according to 

Eq. 3.  

DKI parameter correlation with the apparent structure size was assessed using Pearson's 

correlation coefficient (r). The effects of correlation on the statistical power were 

calculated according to Eq. 9, assuming that the two groups were matched with respect to 

AS, i.e., that there was no inflation due to predictor covariance (R2
G,AS = 0). 

4. Results 

Figure 2 shows axial projections of the DKI parameter maps in one representative subject. 

Visually, the MK and RK maps are similar to the FA maps, with the highest values found 

in the WM. MK and RK maps are similar, since MK is partly determined by RK just as 

RD is partly determined by MD. The numerical values of the MK, RK, and FA maps are 

the lowest in the ventricles, as expected, due to the nearly unrestricted water diffusion in 

the ventricular cerebrospinal fluid (CSF).  

Figure 3 shows the DKI parameters and AS, and their variability, as a function of 

anatomical position along each WM structure. The variability is represented by two 

components: the blue area shows two standard deviations from the mean of the inter-

subject variability and the blue and red areas together show the total variability. The 

evaluation of parameters along structures allowed within-structure details to be resolved. 

For example, FA was reduced in the superior parts of the CST where the tract intersects 

with the CC. In the CC, MD was elevated and FA was reduced at the thinnest part 

(isthmus), probably due to stronger PVE with CSF at this location. This mode of 

visualization also supplies insight into the parameter covariance; MK generally showed 
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inverse correlation with MD, whereas the variation of RK exhibited similar patterns to FA 

and MK. The influence of noise and inter-subject variability was also dependent on 

position. For example, DKI parameters were more affected by noise and inter-subject 

variability in the inferior parts of the CST than in its superior parts (Fig. 3, center column). 

Table 2 presents these results in a condensed format, showing average parameter values 

with coefficients of variation in the sub-segments, compared with values from whole tract 

averages. Table 2 also shows the relative variability induced by imaging and post-

processing noise, as calculated from the bootstrapped noise simulations. In most of the 

structures and parameters, less than 30% of the total variance was attributed to the 

influence of noise. The magnitude of the noise component was heterogeneous along the 

structures, indicated by a varying thickness of the red area in Figure 3. The value of RVnoise 

was found to be at its highest in the inferior segment of the CST, where it contributed with 

as much as 54% of the total variance in MD and approximately 35% of the variance in 

other DKI parameters (Fig. 3 and Table 2). The lowest relative noise contribution was 

found in the CC.  

Table 3 shows the group size requirements in whole structures and in structure sub-

segments, as calculated from the parameter variance. The most precise parameters, 

requiring the smallest group sizes, were MD (n ≈ 10–40), followed by FA (n ≈ 10–50). 

The kurtosis and structure size parameters generally demanded larger group sizes, where 

MK was the most precise (n ≈ 10–70). The parameters RK and AS tended to require more 

than twice the number of subjects compared to any of the other parameters (n ≈ 30–200, 

and n ≈ 80–180, respectively). The worst case was found in the anterior CC where 200 

subjects were required for detecting subtle group-wise differences in RK. Note that RK, in 
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this case, correlated strongly with MK (r = 0.93), suggesting that RK may not add 

substantially to the information already provided by the more precise MK. Evaluating 

whole structures, without dividing them into sub-segments, generally resulted in a lower 

group size requirement, although some combinations of structure segments and parameters 

exhibited behavior contrary to this generalization, for example, the MK in the posterior 

sub-segment of the CC. This indicates that sub-structures may exhibit smaller inter-subject 

variability compared to whole structures, despite having a smaller volume, thus increasing 

the statistical power when evaluated as a sub-structure. 

Correlations between the investigated DKI parameters and the apparent structure size are 

shown in Table 4. Significant correlations between AS and several DKI parameters were 

found in the CG and CC. The most prominent correlation was found for FA in the CG 

(r = 0.80, p < 10–7, for whole structure, Fig. 4) and for MD in the CC (r = –0.53, p < 10–3, 

for posterior sub-segment). Adding the AS as a covariate could reduce the group size 

requirement by 30–60% in the CG and 20–30% in the CC (Eq. 10). No correlations 

between DKI parameters and AS were found in the CST. 

5. Discussion 

In this study, we investigated the group sizes required to find subtle differences in group 

means of DKI parameters in three WM structures with a statistical power of 0.9. The 

results, with respect to group sizes required, not only showed a large heterogeneity 

between the various DKI parameters and between the three WM structures investigated, 

but also heterogeneity between different sub-segments within the structures (Table 3). A 

similar heterogeneity in group size requirement has been found for DTI by Heiervang et 
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al. (2006) when comparing the CG, CST and CC. The heterogeneity in variability implies 

that, for a fixed relative effect size, the statistical power varies between structures and 

their sub-segments, as well as between parameters. For example, in the data presented, 

finding a difference in MK between two groups is more likely in the posterior CC than in 

its anterior part even if the relative effect size in these sub-structures is equal. Knowledge 

of this spatial and parameter-specific variation is expected to benefit studies aiming at 

early diagnosis, and it is critical when a pathogenesis pattern is inferred from the 

observation of significant alterations in one part of the brain before another. In other 

words, the conclusion that a disease did not have its origin in a given part of the brain 

must be accompanied by the knowledge that an effect was likely to have been discovered 

if, in fact, it was there. Thus, awareness of statistical power is crucial both for study design 

and for interpretation of results from DTI and DKI studies. Knowledge of these 

characteristics allows studies to be designed in a way that ensures sufficient power in all 

structures investigated, since the structure with the lowest statistical power defines the 

lower limit of the required group size. Such a procedure could result in some structures 

becoming overpowered, a potential downside for a study (Ferguson, 2009), hence all 

statistically significant group-wise differences should be scrutinized with respect to the 

effect size, considering its practical or physiological relevance using similar studies as a 

guideline (Table 1).  

The analysis of the variations in variability along the structures could also be used to 

reduce group size demands, by sampling only those parts of a structure where the 

variability is expected to be low, assuming, of course, that homogeneous whole-structure 

alterations are expected. This conclusion is somewhat contra-intuitive, since inclusion of 



21 
 

larger volumes normally reduces the standard error of the mean. It should also be pointed 

out that the segment exhibiting minimal variability might vary depending on the evaluated 

parameter. An example of high group-wise variability can be seen in the superior part of 

the CST, where the group size for FA is three times larger than compared to the inferior 

part, which is likely due to the presence of crossing fibers in this region (Jeurissen et al., 

2013, Vos et al., 2012). By contrast, group size demands for RK are a factor of two 

smaller in the superior part of CST. Thus, some WM structures could benefit from being 

subsampled, avoiding regions where variability is known to be high, resulting in favorable 

reductions in group size demands. 

Two other strategies may also increase the power of a study or reduce the group size 

demands; first, to discern whether to prioritize longer scan times or to include more 

subjects when designing the study, and second, to incorporate hidden covariates in the 

data analysis (Vos et al., 2011). The first strategy was investigated by determining the 

portion of variability that could be attributed to effects other than the true differences 

between subjects, i.e., variability introduced by imaging and post-processing noise. This 

investigation was performed under the assumption that the variance of the noise 

component can be reduced by increasing the scan time dedicated to each subject (Eq. 5). 

In most structures, imaging and post-processing noise contributed with 5 to 25% of the 

total variance. In segments with RVnoise ≤ 25%, doubling the scan time for each subject 

would result in group size reductions of only 10%. In segments with higher values of 

RVnoise, such as the posterior CG, inferior CST and posterior CC, the corresponding 

reduction is 20%. The values of RVnoise reported herein are lower than those reported for a 

similar selection of WM structures by Clayden et al. (2009) for DTI performed at 1.5 T. In 
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that study, the noise component was generally dominant for both MD and FA, indicating 

that scan time extension could provide a viable power improvement at that field strength. 

By contrast, our study suggests that the gain in statistical power resulting from measuring 

twice as long per subject, for the DKI protocol employed here, is comparable with 

increasing the group size by no more than 5–20%. Therefore, it could be more profitable 

to invest resources in the inclusion of more patients rather than extending the individual 

scan time, provided that it is practically feasible. 

The second strategy to increase the statistical power described in this report is to include 

hidden covariates in the analysis. The potential efficacy of this strategy was investigated 

by using the structure size as a covariate, which showed that correcting for correlations 

with AS could lower group size requirements by up to 60% for FA in the CG, and 30% for 

MD in the CC. We expected the correlation between AS and DKI parameters to be the 

highest for structures and parameters showing a high contrast to the surrounding tissue, as 

the probable mechanism responsible for the correlation is the variable amounts of partial 

volume effects induced by variations in structure size (Vos et al., 2011). Further, we 

expected this mechanism to be stronger for small structures, in which surrounding tissue 

comprises a larger partial volume fraction. In the data presented, the CG demonstrated 

these effects in accordance with our predictions in that FA, which exhibited the highest 

contrast between the WM of the CG and the surrounding GM (Fig. 1, coronal projections), 

had the strongest correlation to the size of the structure, followed by RK and MK. Further, 

MD did not correlate significantly with AS, again explained by the low contrast between 

the WM of the CG and the GM surrounding it. In the CC, MD was strongly correlated to 

AS, probably due to the large interface with the CSF-filled lateral ventricles. As expected, 
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correlations with size were absent in the CST, since its AS is highly dependent on the 

inclusion gate geometry rather than the structure size itself (Wakana et al., 2007). 

Although the strength and direction of correlation with volume may vary across the brain 

(Fjell et al., 2008), the presence of an association implies that any measured difference in 

diffusion parameters may be due to either alterations in tissue microstructure or in the 

amount of PVE. Disentangling these effects requires a correction for size, as described by 

Vos et al. (2011). For example, our results indicate that a 4% difference in FA may be 

induced by a radius difference of 10% in the CG, even if the microstructure is otherwise 

equal. Therefore, the search and correction for hidden covariates such as structure size, 

has the potential not only to increase the power of a given study, but also to allow for 

better interpretations of the results (Bendlin et al., 2010, Cao and Gold, 2008, Vos et al., 

2011). Similarly the effects of age can be easily included by expanding the currently used 

methods. However, since the effects of aging are well documented elsewhere (Lebel et al., 

2008, Löbel et al., 2009, Sullivan and Pfefferbaum, 2006), age was only considered as a 

possible confounder in the association between diffusion parameters and the structure size, 

and was found to have no significant correlation (α = 0.05) with AS in any WM structure 

or sub-structure. 

Finally, investigating group-wise AS differences would require much larger group sizes 

than for the DKI parameters, as it exhibits a large inter-subject variation (CV ≈ 10–15% in 

all evaluated structures). This result is in agreement with multiple studies of the volumes 

of the healthy brain and individual structures, in which the CVs have been reported to be 

in the range of 10–20% (Choo et al., 2010, Flashman et al., 1997, Kristo et al., 2012, Pitel 

et al., 2010, Teipel et al., 2003). This indicates that a 5% effect in AS, as used in this 
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study, may be regarded to be small (Cohen, 1976) compared to the effect in diffusion 

parameters. The group size requirements in DKI as compared to DTI are expected to be 

higher, since diffusional kurtosis can only be probed at relatively high b-values with 

higher signal attenuation. Higher b-values also demands longer echo times. Taking this 

into account, DKI may still be preferable to DTI in tissue where the DTI model is invalid, 

for example, in regions with complex fiber organization. An example of this may be found 

in Alzheimer's disease, where the FA unexpectedly increases in areas of crossing fibers, 

probably due to the removal of one fiber population (Douaud et al., 2011). Notably, the 

MK maps are smooth in regions where the FA shows the characteristic reduction due to 

fiber crossings (Figure 2). 

A limiting factor in the study is the bootstrapping procedure used to estimate the influence 

from noise since it is not exactly equivalent to repeated measurements. Although it is 

capable of assessing the contribution of specific sources of error (Jones and Pierpaoli, 

2005), we believe that the reported magnitude of the noise component is slightly 

overestimated. This conclusion is supported by the observation that the variability 

between the seven repeated scans (data not shown), used as the base for bootstrapping, 

was generally lower than that found in the bootstrapped data and that it cannot be entirely 

explained by the expected precision in the estimation of the contribution from 

bootstrapping noise. For example, the seven repeated scans exhibited less of the elevated 

variance otherwise found in the inferior CST and posterior CG. The overestimation of 

variance in the bootstrapped parameter maps could be due to the large temporal spacing 

between images, resulting in exaggerated movement compared to a normal acquisition. 
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However, the conclusion derived from this evaluation, i.e., that increased group sizes 

improve the statistical power more than extended scan times, is still valid. 

6. Conclusion 

The variability in DKI parameters varies across the brain, and was seen to vary even 

within single WM structures. This implies that the statistical power is dependent on 

location, which could be a serious confound in studies aiming at early diagnosis of 

disease. Such studies typically focus on finding the region from which the alteration of 

cerebral microstructure originates. Lack of attention to the risk of being underpowered in 

some of the evaluated regions may lead to an incorrect interpretation of the results, i.e., the 

absence of significance may be interpreted as the absence of true effect. Although this 

study was based on the DKI model it should be noted that, since DKI includes the DTI 

model, these conclusions are also valid for conventional DTI. 

An increase in statistical power can be achieved by extending the scan time per subject, 

although this was shown to be less potent than spending that time on scanning more 

subjects. Another strategy that may enhance the statistical power is to correct for hidden 

covariates, such as the size of the structure. In WM structures where the DKI parameters 

correlated significantly with the size of the structure, such a correction could reduce the 

group size requirements to approximately half of their initial size. In order to disentangle 

effects of variable PVE and alterations of underlying microstructure on group-wise 

differences in DTI and DKI parameters, correction for structure size should be performed 

in group comparisons, at least in the corpus callosum and cingulum. 
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Figures

 

 
Figure 1 – The left column shows tractographies of the left hand side CG (A) and CST (D), as well 
as the mid-sagittal truncation of the CC (G), superimposed on a color FA-map. The AND-gates, 
used for structure delineation, are shown as red lines, and the anatomical landmarks are shown as 
black triangles (note that landmarks that coincide with AND-gates are not shown, and that the 
gates defining the CC are not displayed). The middle column (B, E and H) shows the mean track 
(black line), the point cloud that defines the tracts in 3D-space (red to blue dots), the landmarks 
(black triangles), and the selected cross section (dashed line) for display in the right column. Every 
other interval of the point cloud is omitted in order to visualize the path of the mean track (note 
that only points between the outermost landmarks were used in the evaluation and that the figures 
are not to scale). The parametric information contained within each sub-interval of the point cloud 
is projected onto the mean track, thus creating parameter vectors of MD, FA, MK and RK, that can 
be normalized across subjects with respect to the anatomical landmarks. The right column (C, F 
and I) shows cross sections of the point cloud, in a plane that is perpendicular to the mean track. 
Each point is the center of a circle with a radius of 0.5 mm. The area of the cross section, created 
in each interval, was used to quantify the apparent size (AS) of the structures. In the CG (C) and 
CST (F) the AS was defined as the radius of a circle with the same area as the structure. In the CC 
(I) the AS was defined as the thickness of the point cloud. 
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Figure 2 – The image depicts transversal (Tra), coronal (Cor), and sagittal (Sag) projections of the 
DKI parameter maps (MD, FA, MK and RK, respectively). The FA map displays the highest 
contrast between WM and GM, followed by RK and MK, in descending order. MD displays a high 
contrast when comparing CSF to WM and GM, but is low when comparing WM to GM. 
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Figure 3 – The tractographies (top row) show a representative right-hand side CG (green tracts), 
CST (blue tracts), and a mid-sagittal truncation of the CC (red tracts) together with the AND-gates 
(red) used to segment the structures from the whole-brain tractography (not shown for the CC). 
The figure also shows a transparent representation of the same structures (blue) containing the 
mean track (red tract), and the landmarks (black triangles) used to normalize data. The plots show 
the group mean values (bold black line) of the apparent size (AS, bottom row) and the DKI 
parameters (MD, FA, MK and RK) as a function of anatomical position along the structures. The 
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parameter variability is visualized by thin black lines, where the solid lines show two standard 
deviations from the mean (2Vtot

1/2), and the dashed lines show two standard deviations from the 
mean after the contribution from noise has been removed (2Vinter

1/2, Eq. 3). The red field visualizes 
the variability contributed by noise. In the CG, MD displays a high inter-subject variability in the 
anterior regions, whereas MK has its highest variability in the central region. Both FA and RK 
peak at the center, tapering off towards the anterior and posterior endpoints. Parameter variations 
along the CST are most prominent for the FA, probably due to the crossing-fiber region in the 
superior segment. The variability of all parameters, except the FA and AS, is elevated in the 
inferior parts of the structure. Similarly to the CST, the CC displays significant parameter variation 
along the structure. In the thinnest region, the isthmus (black arrows), MD and FA are strongly 
elevated and reduced, respectively, probably due to the PVE at the WM/CSF interface. The CC 
also displays a much smaller relative dependence on noise (red area) compared with the CG and 
CST. It is also notable how the AS and the FA both follow the same trend, which showcases the  
modulating effect of PVE on diffusion parameters due to tract morphology. 
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Figure 4 – Correlation between the mean FA and mean AS in the CG, for the 31 healthy subjects. 
The regression line (black line) shows that a CG bundle with a high AS is likely to exhibit a high 
FA. Note that the correlation coefficient value of r = 0.8 indicates that 64% of the variance in FA 
can be explained by its association to AS. If AS is known, this variance contribution can be 
removed (Eq. 10). 
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Tables 

Table 1 – Relative effect sizes (Δµ/µ) of various conditions as observed in DTI and DKI 
parameters, and group sizes investigated (n, reported as size of control group + patient group). The 
values of Δµ/µ are reported in regions where significant differences in group means were found. 
The coefficient of variation (CV) is the value reported for the control group specified for each 
parameter separately. In cases where the variability was not reported it is marked with a dash (-). 

Source Condition Region Parameter CV 
[%] 

Δµ/µ 
[%] n 

Wang et al. 
(2011) PD 

Caudate, 
putamen, globus 
palidus, 
substantia nigra 

MK 13 15 – 30 30 + 
30 

Grossman et al. 
(2012) mTBI 

Thalamus, 
internal capsule, 
splenium of the 
CC, centum 
semiovale 

MK 
FA 
MD 

1 – 2 
2 
1 – 4 

2 – 3 
3 
1 – 2 

14 + 
22 

Kim et al. (2006) PTSD CG bundle FA 11 – 
18  12 – 26 21 + 

21 
Zhang et al. 
(2011) MDD Right uncinate FA 

RD 
7  
7  

7 
5 

21 + 
21 

Ito et al. (2008) PSP Anterior CC MD 
FA 

17  
8  

15 – 34 
12 – 17 19 + 7 

Bozzali et al. 
(2012) AD Cingulum MD 

FA 
6  
8  

17 
12 

14 + 
31 

Stenset et al. 
(2011) MCI Cingulum, genu 

CC 
FA 
RD 

10 – 
15  
17 – 
29  

7 – 13 
11 – 22 

26 + 
12 

Tang et al. (2010)  EOS Right anterior 
cingulum FA - 14 38 + 

38 
AD Alzheimer’s disease, EOS early-onset schizophrenia, MDD major depressive disorder, 
mTBI mild traumatic brain injury, NAWM normal appearing white matter, PD Parkinson’s 
disease, PSP progressive supranuclear palsy, PTSD posttraumatic stress disorder, RD radial 
diffusivity. 
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Table 2 – DKI parameter values in the group of healthy volunteers (n = 31), calculated in the 
cingulum (CG), corticospinal tract (CST) and corpus callosum (CC). The mean value (µ) is 
presented along with the coefficient of variation (CV in%) and the relative noise contribution to 
variance (RVnoise in%). Average whole-structure CVs were 4.2, 4.7, 4.9 and 8.8% for MD, FA, MK 
and RK, respectively. The most prominent contributor to variance was generally the inter-subject 
variability (reflected by a low RVnoise).  

  MD [µm2/ms] FA MK RK 

  µ CV RVnoise µ CV RVnoise µ CV RVnoise µ CV RVnoise 

C
G

 Ant 0.84 4.6 20 0.56 6.6 8 0.98 4.7 20 1.47 8.4 25 
Post 0.84 4.2 47 0.57 7.6 5 1.02 4.2 28 1.53 8.2 25 
Whole 0.84 3.7 42 0.56 6.1 6 1.00 4.1 22 1.50 7.2 28 

              

C
ST

 Inf 0.85 4.2 54 0.64 4.1 35 1.15 3.8 36 1.72 7.9 35 
Sup 0.82 3.6 24 0.50 6.4 16 1.10 3.1 9 1.46 5.7 8 
Whole 0.83 3.6 42 0.57 4.1 33 1.13 3.2 25 1.60 6.4 25 

              

C
C

 

Ant 1.01 5.9 12 0.69 5.5 6 0.94 8.6 5 1.59 15.2 6 
Cent 1.09 6.3 5 0.67 4.2 5 0.98 8.8 5 1.75 14.5 4 
Post 0.93 6.5 17 0.76 3.6 19 1.17 4.8 35 2.27 13.0 14 
Whole 1.04 5.3 8 0.69 3.6 8 1.00 7.4 5 1.80 12.6 4 
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Table 3 – Calculated group sizes (n) for DKI parameters (MD, FA, MK and RK) and apparent 
structure size (AS), required in order to generate a statistical power of π = 0.9 at an effect size of 
5% and a significance level of α = 0.05. The group sizes shown the number of subjects needed in 
each group and were estimated for whole structures as well as sub-structures. The values of n 
mainly reflects the total parameter variability, meaning that a low Vtotal makes it easier to detect the 
proposed 5% change, making the required group size comparatively small.  

  MD FA MK RK AS 

C
G

 Ant 21 39 21 63 183 
Post 18 51 18 59 147 
Whole 14 34 17 47 148 

       
C

ST
 Inf 17 17 15 55 109 

Sup 13 38 11 30 108 
Whole 13 17 11 37 106 

       

C
C

 

Ant 32 28 65 199 100 
Cent 36 18 68 181 122 
Post 38 13 22 146 101 
Whole 26 14 48 137 85 
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Table 4 – Pearson's correlation coefficient (r) describing the association of DKI parameters (MD, 
FA, MK and RK) with the apparent structure size (AS). As expected, AS correlated with DKI 
parameters in the CG and CC which means that structure size may account for some of the 
measured variability. No significant correlation was found in the CST, as was expected due to the 
high AS dependence on AND-gate definition. No correction for multiple comparisons was done; 
however, no more than 5 significant correlations are expected on the 5% level for 40 independent 
comparisons. 

  MD FA MK RK 

C
G

 Ant –0.23 0.57‡ 0.33 0.17 
Post –0.31 0.69‡ 0.37† 0.48‡ 
Whole –0.32 0.80‡ 0.40† 0.45† 

      

C
ST

 Inf –0.12 0.06 –0.10 0.01 
Sup –0.11 0.17 0.02 0.29 
Whole –0.12 0.17 –0.07 0.13 

      

C
C

 

Ant –0.48‡ 0.26 0.11 –0.14 
Cent –0.44† 0.42† 0.18 0.15 
Post –0.58‡ –0.12 –0.24 –0.44† 
Whole –0.53‡ 0.32 0.05 –0.09 

(†) p < 0.05, and (‡) p < 0.01 
 

 


